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Abstract

Medical image registration is a challenging problem, especially when there is large anatomical variation in
the anatomies. Geodesic registration methods have been proposed to solve the large deformation registration
problem. However, analytically defined geodesic paths may not coincide with biologically plausible paths
of registration, since the manifold of diffeomorphisms is immensely broader than the manifold spanned by
diffeomorphisms between real anatomies. In this paper, we propose a novel framework for large deformation
registration using the learned manifold of anatomical variation in the data. In this framework, a large
deformation between two images is decomposed into a series of small deformations along the shortest path
on an empirical manifold that represents anatomical variation. Using a manifold learning technique, the
major variation of the data can be visualized by a low dimensional embedding, and the optimal group
template is chosen as the geodesic mean on the manifold. We demonstrate the advantages of the proposed
framework over direct registration with both simulated and real databases of brain images.
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1. Introduction

Problem description

Medical image registration plays an indispens-
able role in the analysis of functional and struc-
tural variation of human anatomy. Due to the in-
evitable differences in the human anatomy in the
population under study, an accurate and reliable
method is required to transform the images into
a common reference frame to perform statistical
tests. A large volume of work in the registration
methods has been proposed since the 80’s. The
early developments in image registration method
focused on the elastically-constrained deformations
(Bajcsy et al. (1983); Bookstein (1991)). In the
basic setting, the problem of registering two im-
ages boils down to minimizing the weighted sum
of dissimilarity and smoothness of the deformation
field. However, the problem becomes particularly
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challenging in the presence of a large shape dif-
ference. Despite the fact that smoothness relieves
the ill-posedness of this high-dimensional optimiza-
tion problem, a smoothness term such as Laplacian
of the field alone does not guarantee the preserva-
tion of topology, which may results in abrupt com-
pressions, expansions, and foldings in the warped
images and the loss of one-to-one correspondence.
Furthermore, the dissimilarity term such as Mean-
Squared Error (MSE) or Mutual Information (MI)
is a highly nonlinear function of the deformation
field, and therefore the optimization process is likely
to be trapped in a local minimum. Simultaneous
minimization of dissimilarity and preservation of
topology is hard to achieve with a single regulariza-
tion function of the deformation field. To preserve
topology, one can add explicit constraints such as
bounds on the determinant of the Jacobian of the
fields (Karaçali and Davatzikos (2004); Haber and
Modersitzki (2007)), or restriction of the displace-
ments (Rueckert et al. (2006)). However, the dif-
ficulty of registering two dissimilar images remains
unabated. In this paper, we take an alternative ap-
proach to minimize the dissimilarity and preserve
the topology; we aim to find a sequence of defor-
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Figure 1: The figure illustrates the difficulty of registration
between two dissimilar shapes. The V-shaped image on the
right is the moving image and the W-shaped image on the
left is the fixed image. When the smoothing factor is too
small, the direct path of minimization (blue curve) using
a demons-like algorithm deviates from the space of diffeo-
morphisms and incurs unnatural distortion such as the tear
in the warped image. Increasing the smoothness term, on
the other hand, results in a under-registration where the
residual MSE remains large. We aim to find the registration
path that is both diffeomorphic and biologically relevant (red
curve).

mation fields that gradually warps an image to an-
other, as illustrated in Figure 1.

Geodesic registration on the manifold of diffeomor-
phisms

Large deformation registration methods have
been proposed (Christensen et al. (1996); Dupuis
et al. (1998); Grenander and Miller (1998)) to cope
with the shortcomings of the previous approaches.
In particular, the geodesic registration methods try
to preserve the topology of the deformation by con-
sidering the time-varying velocity field ft(x) the
whole path of registration instead of only the fi-
nal deformation f(x). In its general form, the fi-
nal deformation is the end point of the flow of a
time-dependent velocity vector field vt : Ω→ RD,
t ∈ [0, 1], defined by the differential equation :
df
dt = vt(ft), where ft=0 = Id is an identity map. By
taking the variational approach, we can find the op-
timal velocity vector field vt in the space of smooth
vector fields as the solution to the following cost
(Beg et al. (2005)):

C(v) =
∫

Ω

|I1(f−1
1 (x))−I2(x)|2dx+w

∫ 1

0

‖vt‖2V ,(1)

where I1 and I2 are two real-valued images or vol-
umes, w is the weight, ‖vt‖V is a smoothness term
such as ‖vt‖V = ‖Lv‖2, and L is a differential op-
erator in the space of velocity vector fields. When
the differences between images are only the diffeo-
morphic change of shape, that is, if they are con-
tained in the single orbit of diffeomorphisms, the
similarity term vanishes and the minimum of the
cost C endows the images with a true metric struc-
ture: d2(I1, I2) = minv C(v). Recent developments
in the geodesic registration method built around
this common framework includes the symmetric for-
mulation of the cost function (Avants et al. (2008)),
and the unbiased estimation of the mean template
for groupwise registration (Joshi et al. (2004)) to
name a few.

Geodesic registration on the space of learned mani-
fold

Geodesic registration approach has provided a
mathematically elegant solution to the large defor-
mation problem. However, the numerical computa-
tion of the velocity fields is quite time-consuming
which can outweigh its benefits. More importantly,
geodesic registration calculates the geodesics on the
manifold of diffeomorphisms (Grenander (1993)),
which is still a largely unconstrained space. A
geodesic path on this space can extend outside the
space of “true anatomical variation”, which the
large deformation kinematics does not prevent from
happening. Ideally we want to calculate geodesics
on the manifold of transformations that represent
only the biologically relevant variation. However,
such manifold cannot be represented analytically.

In this paper, we propose a registration frame-
work that achieves this goal. The key idea of the
paper is that we approximate analytical geodesic
paths with finite sequences of small deformations
observed in the actual anatomies in data. In an-
other point-of-view, we are constructing empirical
manifolds from data, a technique known as man-
ifold learning (Hamm et al. (2004)), instead of
dealing with an analytical manifold of diffeomor-
phisms. In particular we borrow an idea from
Isomap algorithm Tenenbaum et al. (2000), which
replaces the geodesic path of the analytical mani-
fold by the shortest path on a k-nearest-neighbor
(kNN) graph that approximates the metric struc-
ture of the empirical manifold. We refer to our ap-
proach as a framework for Geodesic Registration
on Anatomical Manifolds (GRAM).
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The GRAM has the following beneficial proper-
ties:

1. Learning of anatomical manifolds:
GRAM computes the geodesics path from
the observed anatomical variation of the
actual data, which is the key difference to the
previous approaches to the large deformation
problem. The anatomical manifold learned
from a database is reusable: to register test
images from a new database to a template
image in the old database, we can compute
the new registration paths by utilizing the
learned deformations.

2. Efficiency: Since in this framework the defor-
mations are computed between two close im-
ages, we can use simpler and faster registra-
tion algorithms such as Diffeomorphic Demons
algorithm (Vercauteren et al. (2007)), rather
than more elaborate algorithms such as Large
Deformation Diffeomorphic Metric Mapping
(LDDMM) (Beg et al. (2005)). In GRAM
framework, a registration algorithm is an inter-
changeable component, and therefore different
kinds of registration algorithms may be used in
the framework (more will be discussed in Sec-
tion 4.) The only requirement is that the com-
ponent registration algorithm results in diffeo-
morphic deformation fields for two similar im-
ages.

3. Visualization and Automatic template
selection: From the analysis of the shortest-
paths, GRAM computes a Euclidean embed-
ding of the data which allows us to preview
the overall structure of the data such as exis-
tence of multiple clusters or the major mode
of variation. It also finds an optimal template
among the samples for groupwise registration.

Related work
This paper builds on our previous work (Hamm

et al. (2009)) and has been extended by new ex-
periments and in-depth analysis of the algorithm.
In this framework we adopt the Isomap algorithm
(Tenenbaum et al. (2000)) to compute and visual-
ize the Euclidean embedding of the metric struc-
ture of the data after pairwise registration. Sev-
eral authors have proposed related algorithms to
analyze metric structure of the data and visual-
ize them. Blezek and Miller (2006) proposed Atlas
Stratification, which finds multiple modes of the im-
ages by mean-shift and visualizes the distribution

of the data by Multidimensional Scaling. Images
are affinely registered, using Mutual Information
as a metric between two images, although it is not
a metric, strictly speaking. Sabuncu et al. (2008)
proposed an algorithm that also finds the multiple
modes of the images by Generalized Expectation-
Maximization-based clustering. Images are regis-
tered by B-spline, and the membership probabil-
ity of an image belonging to multiple templates
are calculated iteratively. The use of geodesic dis-
tances to discover the manifold structure of data,
has been proposed by Rohde et al. (2008); Gerber
et al. (2009). These two papers commonly use LD-
DMM and Multidimensional scaling to visualize the
manifold structure of data, and the latter further
uses a kernel regression to reconstruct unseen im-
ages from the manifold. However, the two methods
directly register all image pairs, which can be diffi-
cult and slow for image pairs that are very dissim-
ilar. Our framework distinguishes itself from the
aforementioned methods by the following facts: we
not only compute the low-dimensional embeddings
to visualize the data, but we also compute actual
large deformation from each image to a common
template for groupwise registration. Furthermore,
these large deformations are computed efficiently
via sequences of small deformations on the anatom-
ical manifold learned from data.

The remainder of the paper is organized as fol-
lows. Section 2 describes the proposed algorithm in
detail. Section 3 demonstrates the proposed frame-
work with several simulated and real databases,
including simulated 2D images, 3D cortical sur-
faces from OASIS database, and 3D Fractional
Anisotropy map of mouse brains. Section 4 dis-
cusses the limitations and extensions of the pro-
posed method, and Section 5 concludes the paper
with discussion on the future work.

2. Methods

In this section we provide the algorithmic details
of the GRAM framework. The overall training pro-
cedure consists of three stages. First, we analyze
the data structure by coarse registrations between
all image pairs. From this we find a kNN graph
structure and a low-dimensional embedding of the
data. In the second stage, we choose a template au-
tomatically from the graph structure, and identify
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geodesic paths1 from the template to other images
on anatomical manifolds. In the third stage, we
compute the large deformation from the template
to each image by composing small deformations be-
tween adjacent images along the paths. In addition
to the training procedures, we also describe how to
use the trained manifold to register a new set of
images by updating the previously found geodesic
paths. Each stage is described in more detail in the
following sections.

Throughout the paper, let’s assume the dataset
I consists of n images I1, ..., In, and each image is a
nonnegative real function on a 2D or a 3D domain
Ω.

2.1. Construction of empirical manifolds
In the first stage we construct the empirical man-

ifold of data by investigating its metric structure.
For this purpose we represent the data as a graph
whose vertices correspond to the image samples.
Below is the summary of the required steps.

1. Perform coarse registrations between all pair
of images. The edge eij is assigned a weight
equal to the distance dij between two images
after registration. The definition of distance
dij is dependent on the specific algorithm used
for registration, and we use a weighted sum of
a similarity term and a smoothness term.

2. Construct a connected kNN or ε-NN graph
based on the edge lengths.

3. Find the geodesics (=shortest paths on the
graph) between all pairs of vertices, e.g., by
Dijkstra’s or Floyd-Warshall algorithm. The
length gij of a geodesic is the sum of its edge
lengths dkl along the path.

4. (Optional) Visualize the Euclidean embedding
of the data by solving eigenvalue problems (re-
fer to Tenenbaum et al. (2000) for details).

The distance dij is asymmetric in general, that
is dij 6= dji. To make it symmetric we can use
the average 0.5(dij + dji), or we can compute dij

for i < j, i, j = 1, 2, ..., n and assign dji = dij to
reduce the computation to a half. The latter is pos-
sible since dij and dji are usually highly correlated.
By enforcing symmetry the shortest path length gij

becomes a valid metric, since triangle inequality is
fulfilled by the definition of shortest paths.

1From now on, a “geodesic path” refers to the shortest-
path on the anatomical manifold which will be clear from
the context.

The size of the neighborhood k in kNN is a pa-
rameter the user should select. For a small value
of k, the graph is not connected and has multi-
ple disjoint subgraphs. For a too large value of k,
the graph becomes completely connected and the
shortest path is the same as the the direct path. A
convenient heuristic is to choose the smallest value
that makes the kNN graph connected. More will be
discussed in Section 4. An alternative to kNN se-
lection is ε-neighbor selection, in which two images
Ii and Ij are considered neighbors of each other if
dij < ε for some ε > 0. The advantage of this
method is that we can strictly set an upperbound to
the distance of the edges that will be used for regis-
tration. However, finding the smallest ε that makes
the whole graph connected still requires searching
through all values of ε.

The most time-consuming part in practice is the
pairwise registration between all images which re-
quires O(n2) number of registrations. To reduce
the overhead we can perform the registration on
coarse-resolution images of the original data and
also use fewer number of iterations than the final
registration in the later stage. Although such ap-
proximation is not ideal, it may be necessary to
keep the computation time practical for databases
with a large number of images. To further speed up
the pairwise registration, we can distribute the reg-
istration tasks over multiple CPUs, since the regis-
tration of one pair is independent of the other pairs.

2.2. Automatic template selection
An unbiased template of the given data can be

defined as the geodesic mean of the data (Joshi et al.
(2004); Avants and Gee (2004)). From the graph
derived in the previous section, we can choose a
template from the population that is closest to the
geodesic mean:

IT = arg min
i

∑
j

g2(Ii, Ij),

where g is the shortest path length. Since the short-
est path length is only an approximation, the cho-
sen template is different from those of Joshi et al.
(2004); Avants and Gee (2004). However, the ad-
vantage of this approach is that, the template is
chosen with little additional computation. Since we
have already computed the geodesic lengths gij , the
template can be chosen by looking up the values.

Two other variants to the mean are the center

IT = arg min
i

max
j
g(Ii, Ij),
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and the median

IT = arg min
i

∑
j

g(Ii, Ij).

The three templates look similar in our experi-
ments, but we choose the median as the template
due to its resilience to outlying samples in the data.

2.3. Computation of large deformations

We compute the large deformation from the tem-
plate IT to any node Ij by a recursive composi-
tion of the small deformations from its edges along
the geodesic path. Let fi,j : Ωi → Ωj denote
the deformation field computed from the registra-
tion of Ij to Ii. Given the two fields fi,j and
fj,k, we can easily compute the composition field
fi,k = fj,k ·fi,j : Ωi → Ωk by resampling and inter-
polating the two fields. The final deformation f̂T,j

is the refinement on the composed field fT,j by a
few additional iterations of registration. Below is
the summary of the procedure.

1. Identify n geodesic paths from IT to the rest
Ij , ∀j ∈ 1, ..., n.

2. Enumerate all edges E used in any of the short-
est paths. Perform accurate registration be-
tween (Ii, Ij), ∀eij ∈ E .

3. For each j ∈ 1, ..., n,
(a) Let s = (s1 = T, ..., sm = j) be the

geodesic path from IT to Ij .
(b) If fT,j is already computed then exit.
(c) Otherwise, recursively compute fs1,sm

=
fsm−1,sm · fs1,sm−1 .

(d) Fine-tune fs1,sm
by additional iterations

of registration.

Note that we needed only coarse registration re-
sults in the previous stages, and this stage is where
we actually perform accurate registrations. Step 2
may seem to be a huge computational burden at
first since the number of all the edges in a graph
can be as large as n2. In fact, we only need to up-
date the registration for n − 1 edges, that is, no
more than the number of direct registration for a
conventional approach. This is due to property of
the graph that the shortest paths from the template
to the rest forms a spanning tree. Furthermore, the
registration converges faster since the two adjacent
images are similar by construction. The condition
that each deformation field of the edge being dif-
feomorphic is sufficient for the composed field to be
diffeomorphic as well.

The fine-tuning is a crucial part of the procedure.
It is required since the transitivity (Christensen and
Johnson (2003)) is not guaranteed for registration
algorithms in general, that is, the composed field
fj,k · fi,j of the two registration results is not the
same as the field fi,k computed directly from the
registration between Ii and Ik. In summary, the
composed field serves as the initial field to start
the registration which helps to avoid the local mini-
mum of direct registration path, and the fine-tuning
serves as the minimization of the transitive error.

2.4. Registration of new data
The learned manifold of training images can be

used to facilitate the registration of new test im-
ages not included in the training database. When
the new images are introduced, the manifold can
be reused without recomputing the geodesic paths
from the beginning. The geodesic deformation for
the test image can be computed by registering the
new image to the closest image in the training
data and then composing the field with the known
learned deformation field of the closest image to the
template. Below is the summary of the procedure.

1. Register the new test image to the training im-
ages to compute the distances d̃i and the de-
formation f̃i, where i = 1, ..., n is the index of
the training images.

2. Update the distance from the template to the
test image by adding d̃i and dT,i, where dT,i is
the known distance from the template to Ii.

3. Choose the shortest path from above.
4. Compose the fields f̃i and fT,i, where fT,i is

the known field from the template to Ii.
5. Fine-tune the field by additional iterations of

registration.

For this approach to work, the new dataset must
not be too heterogeneous to the training dataset.
Otherwise, the new data will be equally distant
from all training images and gain no benefit from
the learned deformations of the training data.

3. Experiments

In this section we test the proposed framework
with several simulated and real databases, includ-
ing simulated 2D images, 3D cortical surfaces from
OASIS database, and 3D Fractional Anisotropy vol-
ume of mouse brains. To demonstrate its advan-
tages, we compare the proposed method with the
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Template

Figure 2: Two-dimensional embeddings of the manifold of
simulated shapes. Only a subset of the samples is shown to
avoid clutter. The template determined to be the median
of the graph is marked by a green box, and the red lines
denote the nearest-neighbor relationship. The embedding
reveals that there are three major variants (which resemble
the letters U, V, and W) and the rest of the images lie in-
between the three prototypical shapes. The template marked
by the green box is chosen from the median of the geodesic
distances.

direct registration method which does not use the
geodesic path. Since we do not have ground truth
for the ‘best’ registration for these databases, we
measure the quality of the registration results in
terms of MSE, Harmonic Energy (HE) 2 and Max-
imum Jacobian Determinant (MJD) where maxi-
mum is computed over all voxels. 3

3.1. Validation with simulated data
We first test the proposed framework on a dataset

of simulated 2D cortical patches. The aim of this
section is to demonstrate the properties of the pro-
posed method and to check the validity of the algo-
rithm under varying parameters. The data consist
of 60 binary 2D images of size 140×140 which sim-
ulate a patch of a cortex varying in the thickness
and the number of folds. We use an ITK (Ibanez
et al. (2005)) version of the Diffeomorphic Demons
by Vercauteren et al. (2007) for registration due
to its fast speed. The images are registered with

2Harmonic Energy is the mean Frobenius norm of the
Jacobian of the deformation field

3We report the 99 percentile of the Jacobian Determi-
nant instead of the maximum since the maximum is prone
to noise.

55 43 47 53 Fixed Geodesic Direct

41 43 47 53 Fixed Geodesic Direct

57 43 47 53 Fixed Geodesic Direct

7 16 13 53 Fixed Geodesic Direct

25 31 54 53 Fixed Geodesic Direct

Figure 3: Left: Geodesic paths of simulated shapes. The
images are sample paths from the leftmost image (moving)
to the rightmost image (fixed). The number on top of each
image is the sample index. Note the gradual change of shape
along each path. Right: Comparison of the final warped
images from the geodesic versus the direct registration using
the same registration method and parameters. Warping the
W-shaped images (55,41,57) to the fixed image (53) requires
a large deformation near the middle fold in the image. The
proposed method finds such path that gradually flattens the
middle fold, whereas the direct registration aggressive fit the
image by squeezing the middle fold towards the right side of
the image, resulting in artificial fissures in the image.

three levels of resolution for coarse pairwise regis-
tration, and with the original resolution for fine-
tuning, with a smoothness parameter of σ = 1.5.
The whole procedure takes about an hour on our
cluster server (Sun Grid Engine), which has 22
multi-core nodes and 4-8 GB . Since the server is a
shared resource, the exact time can vary. The com-
puting time of the first stage, which is the dominant
stage, can be estimated more accurately from the
equation 0.5n(n− 1)T , where n is the number of
images and the T is the average time to register a
single image to a template under a given computing
resource.

From the coarse pairwise registration we define
the distance in Section 2.1 as the weighted sum of
1) MSE between the fixed and the warped images
and 2) HE of the deformation field:

dij = w MSE(Ii, Ij(fi,j))+(1−w) HE(fi,j).(2)

The smoothness parameter affects the registration
results significantly. A too small value of σ reduces
the final MSE, but also increases HE and MJD sig-
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nificantly (over-registration). A too large value of
σ can make the final MSE many times larger than
it is with a small σ although it reduces HE and
MJD (under-registration). Since the parameter se-
lection is the choice associated with the component
algorithm and not with our framework, we do not
perform repeated experiments for a full range of σ.
Instead, we have chosen an appropriate σ by check-
ing that the deformation field has no negative Ja-
cobian, that is, the field is diffeomorphic. However,
the parameter w and k remains to be decided.

We first show the results with a fixed value of
w = 0.75 and k = 16. 4 Figure 2 shows the two-
dimensional Euclidean embedding of the simulated
data. The embedding conveniently summarizes the
major shape variation of the population which have
three prototypical shapes (which resemble the letter
U, V, and W.)

To measure improvements in registration due to
the geodesic approach, we calculate the relative
change of MSE

δMSE = 100×
MSEgeodesic −MSEdirect

MSEdirect
,

and similarly for HE and MJD.
We perform the groupwise registration using the

automatically chosen template with the proposed
method and the direct method. The registration
results are shown in Figure 3 which shows the paths
and the final warped images of the five samples
which has the largest decrease in MSE. The im-
age warped by the proposed method is noticeably
better than those of the the direct method which
present severe distortions. These samples have
43.4%, 40.1%, 38.1%, 37.6%, and 37.2% decrease
in MSE respectively. The average decrease of MSE
over all samples is 11%, and the number of samples
that shows decrease is 79%. Table 1 summarizes the
relative changes in MSE, HE and MJD. Although
the decrease in MSE is of our main concern, HE
also decreases significantly. This shows us that our
framework can achieve more accurate and smoother
registration simultaneously on average. Also note
that in the worst case, geodesic method results in
higher errors than direct method. The explanation
for this is as follows. The registration errors from
geodesic method have two opposing factors. One is

4The w here is not an absolute value but a relative weight
between the similarity term and the smoothness term. We
normalize the two term to have a unit l2 norm summed over
all images.

the desirable decrement due to the avoidance of the
local minimum of direct registration, and the other
is the undesirable increment from the transitive er-
ror of the composition of deformation fields. Our
experiment shows that the summed effect of the two
factors is beneficial on average, but it can be nega-
tive for a fraction of the whole samples. In practice,
we can always register images using both direct and
geodesic methods and choose the better of the two
methods for each sample, since direct registration
using Demons is computationally inexpensive.

To check the robustness of the framework to the
change of parameters, we repeat the experiments
with three values of w (0.25, 0.5, 0.75). As we
mentioned in Section 2.1, a heuristic of choosing k
is to find the smallest value c that makes the kNN
graph connected. We also repeat the experiments
with k = c, c + 2, c + 4. The w and k change the
topology of kNN graph and subsequently the paths
and the template. Figure 4 shows two-dimensional
Euclidean embeddings with these parameters. The
overall shape of the embedding and the chosen tem-
plates seems to be affected by the parameters. How-
ever, the groupwise registration results of Table 2
shows that the improvements in MSE, HE and MJD
vary within a small range. Note that MSE and HE
decrease consistently whereas the average MJD in-
creases sometimes, which may be due to the fact
that HE and MJD measure different aspects of
‘smoothness.’ From these experiments we conclude
tentatively that a small difference in the parameters
does not adversely affect the final outcome.

3.2. Registration of new data

We demonstrate the capability of our method de-
scribed in Section 2.4: the learned manifold of the
training samples can be used to facilitate the reg-
istration of new test images not included in the
training database. For this purpose we generate
additional simulated images that are similar to but
different from the training images.

To visualize the test images along with the train-
ing images, we need to compute the coordinates of
the new test points in the embedding of the train-
ing images. To do this, we first register the test
images to the training images and compute the dis-
tances from (2). Using these new distances, and
the known embedding and pairwise distances of
the training images, we compute the coordinates
from the algorithm described in de Silva and Tenen-
baum (2002). Figure 5 shows the two-dimensional
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MSE HE MJD

Measure mean ± std max min mean ± std max min mean ± std max min

Decrease 10.7 ± 16.1 % 43.4 % -16.3 % 8.9 ± 8.4 % 32.4 % -13.5 % 0.7 ± 10.8 % 30.7 % -32.4 %

Table 1: Summary of registration results in simulated data. The decrease in Mean Square Error(MSE), Harmonic Energy(HE),
and Maximum Jacobian Determinant(MJD) are shown in percentage. A higher value means a larger improvement.

MSE HE MJD

Measure mean max mean max mean max

w=0.25, k=11 8.9 % 43.1 % 3.0 % 40.1 % 1.3 % 40.2 %

w=0.25, k=13 8.2 % 44.4 % 3.6 % 40.3 % -2.3 % 32.8 %

w=0.25, k=15 7.8 % 43.9 % 4.2 % 40.3 % -2.0 % 32.8 %

w=0.50, k=11 8.1 % 47.5 % 4.3 % 40.3 % -1.4 % 41.1 %

w=0.50, k=13 8.4 % 45.8 % 4.2 % 40.3 % -1.8 % 41.1 %

w=0.50, k=15 9.9 % 43.9 % 3.4 % 40.7 % -2.5 % 41.1 %

w=0.75, k=12 5.5 % 39.2 % 3.7 % 33.8 % 1.1 % 19.0 %

w=0.75, k=14 10.9 % 43.4 % 8.5 % 32.4 % 0.7 % 30.7 %

w=0.75, k=16 10.7 % 43.4 % 8.9 % 32.4 % 0.7 % 30.7 %

Table 2: Summary of registration results in simulated data with different parameters. The maximum and the average decrease
in Mean Square Error(MSE), Harmonic Energy(HE), and Maximum Jacobian Determinant(MJD) are shown in percentage. A
higher value means a larger improvement.

Euclidean embedding of four test images superim-
posed on the embedding of the trained simulated
data. The embedding provides information on the
homogeneity(or heterogeneity) of the test data to
the training data. One of the test images is slightly
apart from the training population due to its rela-
tively distinctive shape, whereas the remaining test
images blend well into the population.

We register the test images to the template de-
termined from the training data, using the method
in Section 2.4. The registration results are shown
in Figure 6 which shows the paths and the final
warped images of the test images. Compared with
the MSE obtained by registering the test images to
the template directly, the MSE obtained from the
proposed method has a decrease of 3.4%, 34.6%,
3.2%, and 38.8%, for the four test images, respec-
tively.

3.3. 3D Cortical surfaces of human brains

We test the algorithm on a database of real brain
images. The Open Access Series of Imaging Studies
(OASIS) databases is a publicly available collection
of MRIs (Marcus et al. (2007).) This data set con-
sists of a cross-sectional collection of 416 subjects
covering the adult life span aged 18 to 96 includ-
ing individuals with neurodegeneration. The sub-
jects are all right-handed and include both men and

women. One hundred of the included subjects over
the age of 60 have been clinically diagnosed with
very mild to moderate Alzheimer’s disease. In this
study we focus on the variation of cortical patterns
in a small volume of interest (VOI). The VOI is
cropped in the region that contains right superior-
frontal cortex. We use the segmentation provided
with the data to extract surfaces between the gray
matter and the cerebrospinal fluid. The size of each
volume is resized to 68×56×72 and affinely aligned.

Out of 416 images we discard 23 outlier images
that are not connected to the rest of the data with
24-NN graph. The images are registered with three
levels of resolution for the coarse pairwise regis-
tration, and with two levels of resolution for fine-
tuning, with a smoothness parameter of σ = 1.0.
The whole procedure takes about 24 hours on our
cluster server.

Figure 7 shows the two-dimensional embedding of
the OASIS data. The cortical surfaces of the VOI
are rendered to aid visualization of the results, us-
ing the curvature information computed from the
smoothed surface. At a glance, the OASIS data
contain complex variation of cortical patterns in
contrast to the simulated data. Note that in the
first axis (from left to right) the embedding shows
change in the depth of sulcus/gyrus which may be
ascribed to the atrophy of the subjects with age and
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w=0.25, k=11 w=0.25, k=13 w=0.25, k=15

Template Template Template

w=0.50, k=11 w=0.50, k=13 w=0.50, k=15

Template
Template Template

w=0.75, k=12 w=0.75, k=14 w=0.75, k=16

Template
Template

Template

Figure 4: Embeddings and templates under varying parameters. These nine figures looks different but they all show the gradual
variation of the shapes between the three prototypical shapes (U,V, and W.)

the Alzheimer’s Disease. The biological plausibility
of the geodesic paths are demonstrated in Figure 8
with the four samples that have the largest decrease
in MSE. Since the samples 54,52,188, and 221 are
quite different from the fixed image 108, the reg-
istration is still not perfect. However the circled
areas in the figure shows that proposed method
can avoid unnatural collapsing of the gyri in the
direct registration method and produces more real-
istic patterns. The advantage is also evidenced by
the improvement of MSE in the four samples (17%,
16%, 14% and 14% respectively.)

We now look at the overall statistics of the data.
The distribution of length of the paths (=the num-
ber of vertices along the path) is as follows. The

numbers of the paths of length 2, 3, 4, 5, and 6
are: 24 (6%), 196 (50%), 139 (35%), 30 (7%), and
3 (1%), respectively. The average decrease in MSE
for these paths are 0%, 2.8%, 2.3%, 1.9% and -0.8%.
The paths of length 2 have no change obviously
since there is no intermediate sample in the path.
The number of paths of length 6 are only three and
shows no improvement in MSE.

Table 3 summarizes the improvements by
geodesic paths. This also shows that we achieve im-
provements in both MSE and the smoothness mea-
sures HE and MJD, although the average amount of
improvement is less significant than the simulated
data. In this experiment we also use Demons algo-
rithm with the segmented volumes. To study the
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Figure 5: Two-dimensional embedding of four test images
(marked by blue boxes) superimposed on the embedding of
the training data. The template is marked by a green box.
The nearest-neighbors of the training data are connected by
red lines, and the nearest-neighbors of the test data within
the training data are connected blue lines. Note that the
similarity of the test images and their neighboring images
in the training data, except for one test image on the upper
right that is relatively distinctive from the other images.

cortical patterns better, we plan to use a surface-
based registration such as Spherical Demons (Yeo
et al. (2009)).

3.4. Fractional Anisotropy map of mouse brains
Finally, we show that the proposed method can

be applied to image database that has large varia-
tion in both shape and appearance. Data of mouse
brains are collected in our lab with the aim of creat-
ing a normative atlas of a developing mouse brain.
The data consist of 69 Fractional Anisotropy maps
of the brains sampled at 2, 3, 4, 7, 10, 15, 20, 30,
45, and 80 days of age. Each volume is resized
to 150 × 150 × 100 and affinely aligned. The im-
ages are registered with three levels of resolution
for coarse pairwise registration, and with the orig-
inal resolution for fine-tuning, with a smoothness
parameter of σ = 1.5. The whole procedure takes
about six hours on our cluster server. The images in
this dataset not only have a larger number of vox-
els than the other experiments but they are more
challenging for registration due to their large shape
and appearance variation from different ages and
the degrees of maturation of tracts.

The two-dimensional embedding of the data in
Figure 9 provides a glimpse of its manifold struc-
ture. From the figure we can observe that the major

Test 1

46 38 53 Fixed Geodesic Direct

Test 2

25 31 54 53 Fixed Geodesic Direct

Test 3

4 5 53 Fixed Geodesic Direct

Test 4

25 31 54 53 Fixed Geodesic Direct

Figure 6: Left: Four randomly generated test images. Mid-
dle: Geodesic paths on the training data corresponding to
the test images. The leftmost image is the closest training
image to the test image. Right: Comparison of the final
warped images from the geodesic versus the direct registra-
tion using the same registration method and parameters.

variability of the data comes from age. The impor-
tance of the age factor is also observed in Figure 10:
a path that connects two brain images of different
ages passes through brains of intermediate ages in
a monotonic fashion. These findings are consistent
with our prior knowledge of the data that the devel-
opmental stage is the major factor of the variation
in the data. Figure 10 also shows that the pro-
posed method produces better registration results
than those from the direct method. The decrease of
MSE is 13.0%, 8.3%, 7.8%, 7.6%, 6.8%, and 6.7%
for the six examples respectively.

Table 4 summarizes the overall improvements by
geodesic paths. MSE and HE decrease significantly
(especially HE), and MJD remains unchanged. For
mouse data we use histogram normalized intensity
difference to compute MSE and geodesic distances.
However, the large appearance variation in addition
to the shape variation may require different model
of the data manifold and revised definitions of the
metric (Trouvé and Younes (2005)), which is out of
the scope of this paper.

4. Discussion

In this section we discuss several aspects of the
proposed framework and their practical implica-
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MSE HE MJD

Measure mean ± std max min mean ± std max min mean ± std max min

Decrease 2.6 ± 4.4 % 17.0 % -7.7 % 2.0 ± 7.4 % 21.4 % -25.1 % 9.7 ± 14.6 % 46.8 % -63.0 %

Table 3: Summary of registration results in the OASIS data. The decrease in Mean Square Error(MSE), Harmonic Energy(HE),
and Maximum Jacobian Determinant(MJD) are shown in percentage. A higher value means a larger improvement.

MSE HE MJD

Measure mean ± std max min mean ± std max min mean ± std max min

Decrease 3.1 ± 3.2 % 13.1 % -4.1 % 10.6 ± 6.0 % 29.1 % 3.4 % 0.1 ± 1.1 % 2.5 % -2.7 %

Table 4: Summary of registration results in the mouse data. The decrease in Mean Square Error(MSE), Harmonic Energy(HE),
and Maximum Jacobian Determinant(MJD) are shown in percentage. A higher value means a larger improvement.

Figure 7: Two-dimensional embedding of the manifold of
OASIS. The cortical surfaces of the VOI are superimposed
on the embedding. Only a subset of the samples is shown to
avoid clutter. The template determined to be the median of
the graph is marked by a green box, and the red lines denote
the nearest-neighbor relationship. Although the variation
of the sulcul and gyral patterns in the embedding is too
complex to describe concisely, there is tendency of atrophy
left to right (compare the leftmost surfaces with rightmost
surfaces.)

tions for registration.

Number of samples
The proposed registration method is motivated

by Isomap algorithm, which is based on the premise
that the true geodesic on a convex set can be ap-
proximated well by the shortest path on the kNN
graph connecting the data samples. Therefore the
framework also inherits the limitations of Isomap.
The number of samples necessary increases expo-
nentially with the intrinsic dimensionality of the

data, which cannot be determined a priori. For
the shortest paths to be faithful approximations we
need a large database whose size is proportional to
the degree of freedom of variation in the data. How-
ever, the number of available images in a study is
typically limited to a few hundreds at most. Con-
sidering that a brain image lies in a huge-dimension
Euclidean space of O(106) voxels, a few hundred is
still a relatively small number. Nevertheless, the
small amount of data in our experiments have been
shown to provide improved registration results com-
pared to direct registration, despite the approxi-
mate nature of our geodesic paths.

Multiple clusters

Our model assumes that the whole data lie on a
single manifold of deformation variation. This as-
sumption can be restrictive when the data are clus-
tered around a few distant cluster centers rather
than evenly distributed on a low-dimensional man-
ifold. In that case the size k of the kNN to make
the graph connected can grow very large (> 100),
which undermines the advantages of our method.
However, even in the extreme case that every im-
age is a neighbor of the other images, the method
simply reverts to the coarse pairwise registration
and no worse. Such cases may be handled by im-
posing connectivity of the graph via a minimum
spanning tree, or by computing a few large defor-
mation paths that connect the clusters via a numer-
ical geodesic registration method. However, if the
data are known to have disjoint clusters a priori,
approaches based on the cluster assumption will be
more appropriate to analyze the data (Blezek and
Miller (2006); Sabuncu et al. (2008).)
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54 32 108 Fixed Geodesic Direct

53 54 32 108
Fixed Geodesic Direct

188 84 108 Fixed Geodesic Direct

221 121 108 Fixed Geodesic Direct

Figure 8: Left: Geodesic paths of OASIS data. The images
are sample paths from the leftmost surface (moving) to the
rightmost surface (template). Note the relatively gradual
change of cortical patterns through the paths. Right: Com-
parison of the final warped surface from the geodesic versus
the direct registration using the same registration method
and parameters. The results of former method present more
smooth and realistic warping of the cortices when compared
to the unnatural warping from the latter method. Represen-
tative regions in which the geodesic registration is markedly
better are shown by cyan-colored circles.

Component registration algorithms

As we stated in the introduction, the compo-
nent registration algorithm of the framework is in-
terchangeable as long as the field it produces is
diffeomorphic between two nearby images. There
are many alternatives to Demons algorithm we
used in this paper, including B-spline free-form de-
formation (Rueckert et al. (1999)), elastically de-
formable model (Davatzikos (1997)), and feature-
based algorithms such as HAMMER (Shen and
Davatzikos (2002)) and DRAMMS (Ou and Da-
vatzikos (2009)). Furthermore, the framework can
be adopted for registering different representations
of imagery, such as point set (of landmarks), curves,
or surfaces. Depending on the component algo-
rithm and the data types, the definition of dis-
tance between two images has to change accord-
ingly. Note that such distance need not strictly
be a true metric or a Riemannian distance since
the shortest-path on the graph impart the metric
properties to the geodesic distance. The question
of which algorithm and representation is optimal
for the given data, is left to empirical studies.
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80
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Figure 9: Two-dimensional embedding of the manifold of
mouse FA map. A mid-axial slice is shown for each mouse
brain volume. Only a subset of the samples is shown to avoid
clutter. The template determined to be the median of the
graph is marked by a green box, and the red lines denote the
nearest-neighbor relationship. The number on top of each
image indicates the age of the brain. The embedding reveals
that the major variation of the data is the age factor which
increases gradually from left to right.

5. Conclusion

In this paper, we propose a novel framework
for Geodesic Registration on Anatomical Mani-
fold (GRAM). The most distinguishing feature of
the method is that it computes the geodesics on
the manifold of the anatomical variation learned
from the data, instead of computing the analytic
geodesics of all diffeomorphisms. This warrants
that any deformation field, as well as geodesic
path, calculated in our framework represents real
brain morphology, and is not merely a diffeomor-
phic transformation of a template, which can repre-
sent an unrealistically distorted morphologies. The
learned manifold also provides a visualization of the
data structure and allows us to choose an optimal
template among the samples for groupwise registra-
tion. The experiments on simulated images, human
cortical surfaces, and mouse FA maps show that the
proposed method can achieve smaller MSEs with
smoother deformation fields than those computed
without using the geodesic paths. This attests to
the hypothesized benefits of utilizing anatomical
variation of the actual data. It is left as our fu-
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80 40 15 15 10
Fixed Geodesic Direct

03 05 10 Fixed Geodesic Direct

80 80 30 15 10
Fixed Geodesic Direct

30 20 15 10 Fixed Geodesic Direct

40 15 10 Fixed Geodesic Direct

Figure 10: Left: Geodesic paths of mouse FA map. The im-
ages are sample paths from the leftmost image (moving) to
the rightmost image (fixed). Each path reflects the changes
in both the shapes and the appearances of developing brains.
The numbers on top is the age of the brain which can be
the same for two different images. Note that the age ei-
ther increases or decreases monotonically through the paths.
Right: Comparison of the final warped images from the
geodesic versus the direct registration using the same regis-
tration method and parameters. Brains in different devel-
opmental stages are quite different, and therefore it is hard
to impose strict one-to-one correspondences. However, the
warped images from the geodesic method are more similar
to the fixed image than those of the the direct method. Note
the asymmetry of the the latter images in the first and the
third examples.

ture work to perform cross-database tests using the
framework and to compare the results with numer-
ical geodesic registration methods.

Finally, GRAM is intended to be a meta-
registration framework to efficiently compute large
deformations, which allows a large class of registra-
tion algorithms to be used as its component. The
code for GRAM framework will be made available
on the web to encourage evaluation from the com-
munity.
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