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Abstract

Preserving privacy of high-dimensional and
continuous data such as images or biometric
data is a challenging problem. This paper
formulates this problem as a learning game
between three parties: 1) data contributors
using a filter to sanitize data samples, 2) a
cooperative data aggregator learning a tar-
get task using the filtered samples, and 3)
an adversary learning to identify contribu-
tors using the same filtered samples. Mini-
maz filters that achieve the optimal privacy-
utility trade-off from broad families of fil-
ters and loss/classifiers are defined, and algo-
rithms for learning the filers in batch or dis-
tributed settings are presented. Experiments
with several real-world tasks including facial
expression recognition, speech emotion recog-
nition, and activity recognition from motion,
show that the minimax filter can simultane-
ously achieve similar or better target task ac-
curacy and lower privacy risk, often signifi-
cantly lower than previous methods.

1 Introduction

When databases of multiple subjects are released in
public, the privacy of data contributors becomes an
important issue. Several privacy preserving mech-
anisms for data publishing have been studied (see
[8] for a review), including k-anonymity [21], secure
multiparty computation [24], and differential privacy
[6, Bl [4]. The majority of privacy-preserving mech-
anisms are designed for databases of categorical at-
tributes, and may not be suitable for databases of
continuous high-dimensional attributes such as photos,
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videos, audio clips, and biometric data. For example,
it is argued that k-anonymity is ineffective for high-
dimensional sparse databases [14], and differential pri-
vacy of high-dimensional continuous data is not as well
understood as discrete data [I9]. Furthermore, differ-
ential privacy guarantee deteriorates with the size of
samples per subject 4], which is problematic if data
consist of, e.g., a large number of video frames per
subject. Differential privacy takes into account only
the range of data values and not their distributions.
While it provides a strong privacy guarantee, it costs
unnecessarily high loss of utility if we are concerned
with databases of a specific data distribution such as
faces.

This paper takes a learning approach to preserving pri-
vacy of continuous high dimensional databases, with
the aim of achieving anonymity for given and unseen
data in terms of expected risks. Suppose a data aggre-
gator collects data from multiple contributorsﬂ and
sanitizes the data using a privacy mechanism before
publishing. The sanitization mechanism considered in
the paper is any differentiable family of non-invertible
deterministic transformations of the original data sam-
ples EL which will be referred to as ‘filters’. An adver-
sary’s goal is to identify data contributors from the
filtered data released in public using machine learning
classifiers. The privacy problem can be viewed as a
learning game between three parties: data contribu-
tors, a data aggregator, and an adversary. Data con-
tributors choose a filter(s) to prevent adversaries from
inferring contributor identities from the filtered data,
while allowing the cooperative aggregator to learn a
useful learning task(s) from the filtered data. In this
context, the privacy breach and the utility of data
can be measured by classification risks, of the subject-
identification task and a target task(s), respectively’]
A more formal description of the problem is as follows.

! The terms ‘contributor’ and ‘subject’ will be used in-

terchangeably in this paper.

2Randomized algorithms may also be used, but the
main focus is on non-randomized algorithms.

30ther non-classification type tasks will be discussed in

Section
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Problem: Suppose there are S data contributors. Let
2 € RP be a continuous high-dimensional data sample,
g(z;u) : RP — R? a deterministic non-invertible filter
parameterized by u, z a target task label, and y a
subject identity label. For example, the goal is to allow
recognition of ‘smile’ z € {—1,1} without revealing
the identity y € {1,...,S} from a face image = after
processing it with a linear or nonlinear filter g(z;u).
An adversary chooses the best model v from a family of
loss/classification models to minimize (maximize) the
risk (accuracy) of a subject classification task, which
is called the privacy risk

Soriv (u,0) = —=E[l(yP* (g(z;u);0), "™ )], (1)

while the data aggregator also chooses the best model
w from a (different) family of loss/classification models
to minimize (maximize) the risk (accuracy) of a target
task, which is called the wutility or target risk

fuen(u,w) = E[I(2PY (g(z;u);w), 2")].  (2)

The privacy risk has a negative sign, since a gain for
the adversary is a loss for data contributors, and vise
versa. Finally, the goal for the data contributors is to
choose a filter g(z;u) from a family that attains the
optimal utility-privacy risk trade-off.

Minimax filter: The optimal privacy risk value for
data contributors is the minimum risk in face of the
worst adversary:

min max fpriv(u, v), (3)

and the optimal utility risk value is the minimum risk
from a fully cooperative aggregator:

minmin fu(u, w). (4)

Omitting the details for now, the minimax filter is de-
fined as follows:

Definition 1. Given a family of filters G = {g :
RP — R}, a family of loss/classifiers for the pri-
vacy risk { foriv : RT = R}, a family of loss/classifiers
for the target risk { futi1 : R? — R}, a minimax filter
g(;u) € G parameterized by u, is the solution to the
optimization problems (@ and .

By definition, a minimax filter is an optimal filter for
preserving privacy of data contributors for a given data
distribution in terms of expected risks. After learning
a filter, the data aggregrator can release the filtered
data in public, with the assurance that no other filter
from the family provides better privacy preservation
and utility. Algorithms to find minimax filters are pre-
sented in Section 2] which builds on a classic method of
minimax optimization (see [I§] for a review). In this

setting of a learning game among three parties, the
data aggregator is assumed to act truthfully on be-
half of the data contributors. However, the aggregator
needs to store the original data from the contributors
to find optimal filters, which leaves the aggreagtor vul-
nerable to privacy breaches by mistakes or by external
attacks. Therefore, an additional protocol for learning
optimal filters is proposed in the paper, where no party
needs to access original data nor filter parameters of
others during learning (see Figure. In addition, this
protocol allows learning of personalized minimax fil-
ters to adapt to each contributor’s data. For example,
if medical data from multiple institutions are to be
collected for aggregate analyses, individual filters for
each institution (and for each subject from the institu-
tion) can be learned and implemented in a distributed
way without storing all private data in a single loca-
tion. The corresponding algorithms are presented in
Section

Contributions: This paper proposes a novel mini-
max formulation for optimal utility-privacy trade-off
in high-dimensional continuous data; the paper pro-
vides practical algorithms that find minimax filters
for a broad family of filters and losses/classifiers with
assumptions of differentiability only; the paper also
presents a distributed protocol for learning personal-
ized minimax filters assuming untrusted aggregators.

Advantages of our approach compared to previous ap-
proaches are further explained in Related work and
Experiments sections. In particular, experiments with
several real-world tasks including facial expression
recognition, speech emotion recognition, and activ-
ity recognition from motion, show that publicly avail-
able numerical databases are surprisingly susceptible
to subject identification attacks, and that minimax fil-
ters can reduce the privacy risks to near chance levels
without sacrificing utility by much.

2 Learning minimax filter

In this section, formulation and optimization methods
of minimax filters are presented in detail.

2.1 Privacy risk

The privacy risk of data contributors was defined as
the negative of the average subject classification loss
. One can use either the multiclass classification
loss (=identifying the subject out of S subjects)

fpriv(uyv) = %Z_l(y(g(xzvu%v)a?h% (5)

where y € {1,...,S}, or the binary classification loss
(=identifying if the owner of the sample z is s or not),
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Figure 1: Distributed learning of individual minimax
filters. Each contributor learns an individual minimax
filter whose parameters are not revealed to the ag-
gregator nor other contributors. All communications
involve filtered samples (or sufficient statistics from
them), and the aggregator only manages the concur-
rency of filtered samples.

where y = —1 means ‘not the same subject’ and y = 1
means ‘the same’. With the binary loss, there are S
such losses one for each subject, which can be aver-

aged] as:

fprlv szfl xu S)ayi)v (6)

s i€l

where ¥ = [vq, ..., vg] are the set of parameters for S
subjects, and I is the sample index for subject s. The
binary loss has one potential problem — there are (S —
1)-times more negative samples from other subjects
than positive samples from self, assuming the same
number of sample per subject. Consequently, the high
chance level accuracy (S —1)/S gives a false sense of
a high privacy risk. To address this, the paper uses a
weighted risk that weighs the cost of true-positive (S—
1) times more than the cost of true-negatives, making

the chance level accuracy 0.5 and not (S —1)/S. The
modified binary loss is

1 (S =1)-Uy(g(@i), yi), fyi=1

l %)), Yi) = .
o ={ {0y v ity = 1

(7)
If each subject has different number of samples, the
weights can be changed accordingly.

2.2 Joint utility-privacy risk
Trivial solutions to privacy risk minimization already
exists — filters that output random or fixed numbers

4Minimizing individual losses instead of the average loss
will be considered in Section

independent of actual data. However, such filters have
no utility whatsoever for data aggregators. To avoid
trivial solutions, it is necessary to include the sec-
ondary goal of minimizing the utility risk

=~ Zl glxi;u);w), z;), (8)

by min, miny, fusi(u, w) which is equivalent to
min,, [— maxy, (— futi (v, w))]. Consequently, a joint pri-
vacy and utility risk minimization can be defined using
a constant p (say, 1) that weighs the relative impor-
tance of privacy and utilit

—p mgX(—fum(U,w)) . (9)

futll Uu, w

min [max fpriv(u, v)
u v

Any task, including multiple tasks, may be used as a
utility task(s) unless the target z and the identity y
variables are totally dependent given data g(z). Note
that other non-classification type tasks can also be
used as a target, such as the truthfulness of recon-
structed data in terms of least-squares errors

Znh gl )i w) -

w) is from a family of differentiable func-
tions {R? — RP} which reconstruct the original sam-
ple using linear or nonlinear functions. Note that
h(g(x)) cannot be an identity function if the filter is
non-invertible such as dimensionality reduction.

futll U U} xz”v (]-0)

where h(+;

2.3 Minimax optimization

The joint utility-privacy risk minimization @ is an un-
constrained continuous minimax problem (see [I8] for
a review). It is equivalent to the following problems:

- P mgx(_futil(u7w)>q11)
—p Pua(w)] = min@(w).  (12)

min[max fpriv (U, v)
u v

= min[®p(u)

The minimax problem involving three variables u, v, w
is a variation of a two-variable minimax problem
min, max, f(u,v) = min, ®(u). For simplicity, the
two variable problem will be used for describing the
minimax problem. Continuous minimax problems are
more challenging than standard minimization prob-
lems for the following reasons. First, a closed-form
max function ®(u) usually does not exist; otherwise
the problem is the same as the standard minimiza-
tion. Second, argmax, f(u,v) may have multiple v’s
as solutions, depending on which ®(u) becomes differ-

ent functions. Third, it has two loops: an outer loop to

5The joint problem can also be formulated as minimiz-
ing the utility risk with a constrain on the privacy risk,
which will be similar to solving @D multiple times with an
increasing p using interior-point methods.
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minimize ®(u) and an inner loop to maximize f(u,v).
However, there are several known classic algorithms
for continuous minimax problems which require only
weak assumptions on f. The f is assumed to be con-
tinuously differentiable with u and v, and V,, f contin-
uously differentiable with v. A first-order optimization
method was proposed by Panin [I7] and refined later
by Kiwiel [I1I], who uses a linear approximation of f
at a fixed u along the direction ¢

fl(Q7U) = f(u,v) + <vuf(uvv)a Q>v (13)

and the approximate max function
o'(q) = max f'(g,v). (14)

Using this approximation, a line search can be per-
formed along the descent direction ¢ that minimizes
the max function ®. In particular, with additional
assumptions of Lipschitz continuity of V, f and com-
pactness of the domains for u,v, Kiwiel’s algorithm
monotonically decreases f for each iteration and con-
verges to a stationary point u*, i.e., a point u for which
max, (V. f(u*,v), ¢) > 0 for all directions g. This pa-
per uses Kiwiel’s algorithm (Algorithm [1)) to solve the
joint utility-privacy optimization problem.

Algorithm 1 Kiwiel’s algorithm

Main routine (see Supplementary Material for a full
description)
Input: function pointers f, ®, ®}, max iteration T
Init: Select uq, v1 randomly
Output: optimal parameter upy
Begin:
fort=1,...,T do
Solve ®(uy)
Find descent direction g; by min, ®'(g) (14)
Exit if solution converged
Perform line search and update us11 = us + - g4
end for

Remarks: There is a special case of continuous min-
imax problems known as saddle point problems, in
which f(u,v) is convex in u and concave in v (con-
sider f(u,v) = u? — v?). Analogous to (strictly) con-
vex problems, f(u,v) has a global minimum (u*,v*)
which satisfies f(u*,v) < f(u*,v*) < f(u,v*), and its
convergence rates are previously analyzed [I5]. Unfor-
tunately, the problem at hand is not a saddle-point
problem. To see this, suppose one chooses a fam-
ily of convex losses (e.g., least-squares, hinge, logis-
tic, or exponential losses), and the family of linear
classifiers. With a d-dimensional filter output g(u) =
[g1(w), ..., ga(u)], the Hessian of the loss I(g(u);v) with

respect u is (if it exists)

HLl) = (o) Hy)(ula)) + 3 o Folarl, (19
k

where H[-] and J[-] are Hessian and Jacobian matrices.
Since the first term H,[l] is positive semidefinite for a
convex [, it will be difficult in general for the LHS
H,[l] to be negative semidefinite. For example, with
linear filters, the second term is zero (Hy[gx] = 0),
and consequently [ is convex in both u and v, which is
not a saddle-point problem. However, the presence of
local minima does not prevent algorithms from finding
a good solution in practice. In the experiments with
real datasets, local minima did not pose a noticeable
problem in achieving promising results.

Algorithm 2 Joint minimax algorithm

Input: data {(x;,yi,2)}, loss/classifier [(- ; v, w), filter
g(- ;u), params for Kiwiel’s algorithm
Output: minimiax filter params u
Subfunctions:
® foriv: outputs the

2
VudfplriVa vvdfpriw ddilg;v given u,v
fusir: similar to foriv
®piy: OUtputs max, fpriv(u, v) given u
(I)util: similar to (I)priv
@;rivz outputs
maxy [ fpriv(U, v)+(Vy foriv(w, v), ¢)] and optimal
v given u, q
e @l .: similar to ®

value and derivatives

fariv
Main functions:
o f(u,v,w): outputs f = foriv(u,v) + p fuei(u, w)
and derivatives V,f,V,f, Vu f, dd:TJ;’ (;fT{U
U, U, W
o &: outputs (Ppriv(u) — p Puin(u)) given u
e &l outputs (@;riv(u, q) — p ® . (u,q)), and opti-
mal v, w given v and ¢
Begin:
Call Algorithm [I| passing pointers to f, ®, ®' and
hyperparameters

given

2.4 Algorithm

The joint utility-privacy minimax algorithm is sum-
marized in Algorithm It is a meta-algorithm that
wraps around the two-variable minimax solver (Algo-
rithm . For given data and a given family of fil-
ters and a family of loss/classifiers, the algorithm de-
fines subfunctions to evaluate f and its derivatives. It
also defines sub-optimization routines to find ® and
®', which can use any appropriate optimizer for the
given loss/classifier type. The final minimax solution
is found by calling Kiwiel’s algorithm passing the
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function pointers to f, ® and ® and other parameters
as arguments.

3 Distributed learning protocol

Given a sufficient amount of data per subject, it is
possible to learn personalized minimax filters adapted
to each contributor instead of a common filter for all
contributors. This will be especially useful if cer-
tain contributors have data distributions very differ-
ent from the population distribution. Each contribu-
tor has its own filter parameters u, and privacy task
parameters vg, and shares the common task parame-
ters w with other contributors. Let @ = {uq,...,ug}
and ¥ = {vy, ..., vg} denote the sets of individual filter
parameters and privacy risk parameters. The person-
alized minimax filters are found by solving

min ®(a) = Irgin [mgx fpriv(ﬁ,@)—pmgx(—fum(ﬁ,w))L
16)

u

where the privacy and the utility risks are

Foenl@) = = 32 3" “Ilylg(aisu)in.), 5l 7)
s i€l

Funliw) = 5 30 S (e u)iw),z). (15)
s i€l

For the privacy risk, the weighted binary classification
loss is used, where the subject identity label y is
—1 for the samples from other contributors and is 1
for the contributors’ own samples. While this opti-
mization can be solved in batch as in Section [2] there
is an approach which provides additional privacy. In
batch learning, an aggregator needs access to original
data, which leaves the aggregator vulnerable to pri-
vacy breaches by mistakes or attacks. These can be
prevented by a distributed learning protocol in which
no party has access to original data nor filter param-
eters of others during learning. This is achieved by
making the aggregator serve only as a coordinator of
the distributed learning and delegating the actual opti-
mization work to each contributor. Figurel[l|illustrates
this idea.

3.1 Algorithm

The proposed solution for optimizing the personalized
risk is to use the block coordinate descent. The
objective is minimized by finding optimal parameters
for each contributor s while keeping other contribu-
tors’ parameters fixed

Hiin [II}]&X fpriv(USa vs) —p Hlué)lX 7futil(u8a ’LU)], (19)
and the process is repeated until convergence (see
Sec. 2.7 [2] for a general discussion on convergence).

The protocol is described in Algorithm Initially,
contributor s has its own data X and target class
labels Z,. Before the distributed process begins, a
common initial minimax filter g learned from public
domain data in batch, is distributed to all contribu-
tors. A contributor s sees its own data, current filtered
samples gy (X4 ) of all others ' # s, and the target
labels Z for all contributors. The contributor then
updates its minimax filter by a few iterations of joint
utility-privacy algorithm (Algorithm . Intuitively,
what each contributor does in its iteration, is updat-
ing its filter us so that its filtered data g, is seemingly
indistinguishable from others’ data.

Algorithm 3 Distributed learning protocol
Main routine on aggregator
Input: T, S, initial filter g(-;u)
Output: final filtered data g(X)
Init: Send initial params u and receive filtered samples
9s(Xs) and labels Z;, s =1,...,S. Re-distribute {Z,}.
Begin:
fort=1,...,T do
for s=1,...,5 do
Call Contributor s’ routine with updated values
{95 (X0)}
Receive and update gs(Xs)
end for
end for

Contributor s’ routine
Input: data X, and labels Z, loss/classifier I(- ; v, w),
filter g(- ;u), and hyperparams
Output: individual minimax filter params u,
Init: Receive initial ug from the aggregator, and send
back gs(Xs) and Z
Begin:
fort=1,...,T; do
Use Algorithm [2| to solve and update u;
Send gs(X5) to the aggregator
end for
Comments: Multiple contributors routines may be
called in parallel for asynchronous updates of gs(X5).
Additionally, to reduce communication loads, it is pos-
sible to communicate only the sufficient statistics re-
quired for computing the loss and its derivatives in-
stead of actual filtered data gs(X5).

4 Related work

Utility-privacy trade-offs using the notion of differen-
tial privacy have been studied analytically, in particu-
lar in the context of the statistical estimation [20] [T}, [3]
and learnability [10]. For a non-differentially pri-
vate approach, Krause et al. [12] studied the NP-
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hardness of optimal utility-privacy trade-off in discrete
attribute selection, and demonstrated near-optimality
of greedy selection when the attributes are condition-
ally independent, which, however, is unlikely for high-
dimensional continuous data. Also, previous work
used mutual information to quantify utility and pri-
vacy risks, which are difficult to estimate in practice
for high-dimensional continuous data, while this paper
uses maximum empirical loss which is readily evalu-
ated. Preserving privacy of high-dimensional face im-
ages using deterministic algorithms has been proposed
in [16, @, [7, 23]: [16] applies k-anonymity to images;
[7] learns a linear filter using Partial Least Squares to
reduce the covariance between filtered data and pri-
vate labels; [23] also learns a linear filter using the
log-ratio of the Fisher’s Linear Discriminant Analysis
metrics. Our approach differs from these in several
aspects: It is not limited to linear filters and is appli-
cable to arbitrary differentiable nonlinear filters such
as multilayer neural networks; It directly optimizes the
utility-privacy risk instead of optimizing heuristic cri-
teria such as covariance differences or LDA log-ratios.

5 Experiments

The proposed algorithms are evaluated using three
real-world datasets: face data for gender/expression
recognition, speech data for emotion recognition, and
accelerometry data for activity recognition.

Filters: Linear dimensionality reduction is mainly
used as filters (z — GTx), with two-layer neural net-
works as nonlinear filters when applicable. The follow-
ing methods of choosing the optimal filters are com-
pared:

e Linear, non-private: random subspace projection
(Rand). G is a random full rank D x d matrix.

e Linear, non-private: PCA. @ is the eigenvectors
corresponding to d largest eigenvalues of Cov(x).

e Linear, private: Private Partial Least Squares
(PPLS), using Algorithm 1 from [7].

e Linear, private: Discriminately Decreasing Dis-
criminability (DDD) [23] with a mask-type filter
from the codd®l

e Linear and nonlinear, private: Minimax filter .

Remarks: DDD requires analytical solutions to eigen-
value problems which are unavailable in multiclass
problems, and is used only in the binary problem with
the face database. Also, DDD code uses a mask-type
filter, and the dimension d is same as the image size.
The dimension d is also irrelevant to nonlinear Mini-
max since it does not use linear dimensionality reduc-
tion.

Shttp://mplab.ucsd.edu/~jake

Classifier/loss: Logistic regression is used a classi-
fier for both utility and privacy risks, where the loss
y(g(zi;u),y;;v) is the negative log-likelihood. For
optimization subroutines ® and ®' in Algorithm [2| L-
BFGS is used with the 1st and 2nd-order derivatives

Vul, Vol, #5L of the log likelihood.
Parameters: A small regularization factor (A =

1079) is used for logistic regression, and p = 1 for
joint utility-privacy risks. The number of iterations for
Minimax subroutines is set to Taux = 5 for auxiliary
routines (see Supplementary Material) and T = 1 for
distributed routines (Algorithm[3]) The main iteration
for Minimax is stopped manually when the progress is
slow (T = 20 — 200). Other hyperparameters for Al-
gorithm [I] are in Supplementary Material.

5.1 Gender/expression recognition from face

The Genki database [23] consists of face images with
varying poses and facial expressions. The original data
is used unchanged, which have N = 1740 training im-
ages (50% male and 50% female; 50% smile and 50%
non-smile) downscaled to 1616 pixels. The test set has
100 images (50 males and 50 females;50 smiling and
50 non-smiling) non-overlapping with the training set.
The dimensionality of the original data is D = 256,
and the filter is tested with d = 50,100, 150, 200. The
dataset has gender and expression labels but no sub-
ject label. Consequently, gender classification is used
as the private task and expression classification is used
as the target task. Six methods are compared: Rand,
PCA, PPLS, DDD, Minimax 1 (linear), Minimax 2
(nonlinear). For the nonlinear Minimax 2, a two-layer
sigmoid neural network is used with of a small number
of hidden nodes (D x 10 x 10). The nonlinear network
is pretrained as a stacked denoising autoencoders [22]
followed by supervised backpropagation with the tar-
get task.

Figure [2] shows the test accuracy. The dotted lines
are level sets of utility-privacy trade-off (=target task
accuracy - private task accuracy) shown for a refer-
ence. Our methods (Minimax 1,2) achieve the highest
accuracy for the target task (expression) and nearly
the lowest accuracy for the private task (gender) at
the same time. Compared to the linear Minimax 1,
the nonlinear Minimax 2 is slightly better in the tar-
get task accuracy and is slightly worse in the privacy
risks. For all dimensions d, Minimax 1,2 achieve the
best compromise (=closer to the top-left corner) of all
methods. In terms of privacy risk, Minimax 1,2 and
DDD achieve almost the chance level accuracy (=0.5),
which implies a strong privacy preservation. DDD
comes close to Minimax, while another private method
PPLS is not very successful in reducing the privacy
risk. As expected, non-private methods (Rand, PCA)
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Figure 2: Genki database: Expression recognition vs and gender recognition from faces.
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Figure 3: Enterface: Emotion recognition vs and subject identification from speech.

do not reduce the privacy risk. As dimension d in-
creases from 50 to 200, the accuracy of both the target
and the private tasks increases (=toward top-right) for
all methods, but the value of utility-privacy trade-off
(=accuracy of target task — accuracy of private task)
remains relatively the same regardless of d. (Note that
d is irrelevant to Minimax 2 and DDD.)

5.2 Emotion recognition from speech

The Enterface database [I3] is an audiovisual emo-
tion databases of 43 speakers from 14 nations read-
ing pre-defined English sentences in six induced emo-
tions. From the raw speech signals sampled in 48 KHz,
MFCC coefficients are computed using 20 ms windows
with 50% overlap and 13 Mel-frequency bands. The
mean, max, min, and standard deviation of the MFCC
coeflicients over the duration of each sentence are com-
puted, resulting in N = 427 samples of D = 52 dimen-
sional feature vectors from S = 43 subjects. Each sub-
ject’s samples are randomly split to generate training
(80%) and test (20%) sets. Average test accuracy over
10 such trials is reported. Linear filters with dimen-
sions d = 10, 20, 30,40 are used. The target task is a
binary classification of ‘happy’ and ‘non-happy’ emo-
tions from speech, and the privacy risks is the multi-
class (S = 43) subject classification using the multi-
class loss ().

Figure [3| shows the test accuracy. The target task ac-
curacy of Minimax is comparable to PPLS, PCA and
Rand, but the privacy risk is significantly lower than
other methods, near the chance level (1/S = 0.02)
compared to 0.4 — 0.6 of non-private methods. This
also shows that seemingly harmless statistics (mean,
max, min, s.d. of MFCC) are quite susceptible to iden-
tification attacks without privacy mechanisms. Similar
to experiment 1, the accuracy of both the target and
the private tasks increases with the dimension d for
all methods, and the value of utility-privacy trade-off
remains similar regardless of d.

5.3 Activity recognition from accelerometry

The UCI Human Activity Recognition Dataset [13] is
a collection of motion sensor data on a smartphone by
30 subjects performing six activities (walking, walking
upstairs, walking downstairs, sitting, standing, laying).
Various time and frequency domain variables are ex-
tracted from the signal, resulting in N = 10299 sam-
ples of D = 561 dimensional feature vectors from 30
subjects, which are used in the experiment unchanged.
Out of 30 subjects, 15 subjects are chosen randomly
(call it domain 1) and the other 15 subjects (call it
domain 2) are left for the subsequent experiment on
distributed learning. For each domain, each subject’s
samples are randomly split to generate training (50%)
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Figure 4: UCI: Activity recognition vs subject identification from accelerometry.

and test (50%) sets. In this experiment only domain
1 subjects are used. At each trial, the subjects and
the training/test sets are randomized, and the average
test accuracy over 10 such trials is reported. Linear fil-
ters with dimensions d = 10, 20, 50, 100 are used. The
target task is a multiclass (C' = 6) classification of ac-
tivity, and the privacy risks is the multiclass (S = 15)
subject classification risk .

Figure [4] shows the test accuracy. The target task
accuracy of Minimax is much higher than others at
d = 10,20 and becomes comparable to others at d =
50, 100. However the private task accuracy of Minimax
is lower than PPLS and significantly lower than PCA
and Rand, close to the chance level (1/S = 0.067).
The figure also shows that accelerometry data are sus-
ceptible (0.2 — 0.7) to identification attacks without
privacy mechanisms. For all dimensions d, Minimax
achieves the best compromise (=closer to the top-left
corner) of all methods similar to previous experiments.
Also, similar to previous experiments, the accuracy of
both the target and the private tasks roughly increases
with d for all methods, but the value of utility-privacy
trade-off remains similar.

5.4 Distributed learning of individual filters

In this experiment, the protocol for distributed learn-
ing of individual minimax filters (Algorithm 3] is eval-
uated using the same accelerometry data. For this
purpose, samples from the S = 15 subjects in domain
2 (who are not in domain 1) are used. The individual
filters are initialized with a common minimax filter
learned from domain 1 (with d = 20). The accuracy
of target and privacy tasks over the iteration in Al-
gorithm [3] is computed. The target task is activity
recognition as before, and the privacy task is weighted
binary subject identification , as the goal is for each
contributor to learn its own filter.

Figure [5| shows the test accuracy averaged over 10 tri-
als. The target task accuracy increases slightly from

0.936 + 0.013 (before learning) to 0.946 + 0.010 (af-
ter 20 iterations), and the privacy risk decreases from
0.674 £ 0.011 (before learning) to 0.538 £+ 0.017 (after
20 iterations) where the chance level is 0.5. These im-
provements demonstrate that individual minimax fil-
ters can be learned successfully in a distributed setting
using the proposed protocol.
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Figure 5: Distributed learning of individual minimax
filters from accelerometry dataset.

6 Conclusion

This work presents a practical privacy-preserving
mechanism for publishing continuous high-dimensional
datasets. Minimax filters are defined to achieve the
optimal utility-privacy trade-off given a family of fil-
ters and a family of loss/classifiers. Algorithms for
finding minimax filters in batch and distributed set-
tings are presented and demonstrated on real datasets.
Experiments show that publicly available multisubject
datasets per se are surprisingly susceptible to subject
identification attacks, and that even linear minimax fil-
ters can reduce the privacy risks close to chance level
without sacrificing target task accuracy by much.
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