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Part 1/4

1. How robust is naive ML model?




‘ Success of machine learning
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rticle: A year ago, Joaquin Phoenix made headlines when he appeared on
the red carpet at the Golden Globes wearing a tuxedo with a paper bag over
his head that read, "I am a shape-shifter. I can’t change the world. I
can only change myself." It was a promise to not change to fit into the
Hollywood mold: "I think that’s a really special thing, to not change
yourself. I think it's a really special thing to say, ‘This is what'’s
inside of me, I’m proud of it, and I’m not going to be ashamed because of
the way that someone else thinks I should be.’" Now, it’s the Oscars, and
Phoenix is at it again. But this time, his publicist is saying he’ll be
wearing a tux no matter what.

Megyn Kelly was not impressed, and she let him have it on The Tonight Show.
"You know, I feel like, I feel like you could have worn the tux," she says.
"But you’re saying you’re a shape-shifter. I don’t know if you can change
your tux, but you can change your mind. You can change your mind. You can
change your mind." Phoenix says he did, but it didn’t stick. "I was like,
‘Okay, I'm going to wear a tuxedo to this thing.’ And then I thought, ‘I
don’t want to wear a tuxedo to this thing.’" Kelly goes on to encourage him
to change his mind again, but Phoenix says it’s too late: "I'm committed to
wearing this."

Figure 3.15: The GPT-3 generated news article that humans found the easiest to distinguish from a human written
article (accuracy: 61%).

https://devopedia.org/imagenet

https://syncedreview.com/2020/03/18/ai-ct-scan-analysis-for-covid-19-detection-and-patient-monitoring/
https://towardsdatascience.com/deep-learning-for-self-driving-cars-7f198ef4cfa2 4
Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020).
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But is machine learning reliable?
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Finlayson, Samuel G., et al. "Adversarial attacks against medical deep learning systems." (2018).



‘ But 1s machine learning reliable?
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Adversarial Top-3 captions:

1. A woman brushing her teeth
in a bathroom.

2. A woman brushing her teeth
in the bathroom.

3. A woman brushing her teeth
in front of a bathroom mirror.

Wu, Min, et al. "A game-based approximate verification of deep neural networks with provable guarantees." (2020).
https://www.nature.com/articles/d41586-019-03013-5
Chen, Hongge, et al. "Attacking visual language grounding with adversarial examples: A case study on neural image captioning.” (2017). 6
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‘ But is machine learning reliable?

llyas, Andrew, et al. "Black-box adversarial attacks with limited queries and information." (2018).

Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition." (2016).
https://www.theverge.com/2019/4/23/18512472/fool-ai-surveillance-adversarial-example-yolov2-person-detection 7
Wu, Zuxuan , et al. "Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors." (2020).
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What is wrong with M7




‘ What is wrong with ML.?

= Basic assumption of ML.:
Training and test sets have the same distribution
Priain(%,¥) = Prese(x,y)

= Most benchmark datasets have this property
MNIST, EMNIST
SVHN
CIFAR10/100
Imagenet
COCO




'Can this hold in reality?

= Difficult because
2 ML models are now increasingly being deployed in the wild

2 Impossible to train on all possible scenarios that can be
encountered at test time

https://www.youtube.com/watch?v=00T3UIXZztE
https://www.cnet.com/news/face-masks-are-thwarting-even-the-best-facial-recognition-algorithms-study-finds/
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'Can this hold in reality?

= Performance of the model drops significantly in presence of
common corruptions in the data
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o BT e
i s

Defocus Blur Frosted Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Resnet 50 is [J8lll accurate on
clean test set
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= “Al systems need to be trained to handle environmental differences like
lighting, which can vary among clinics, impacting the model’s predictions.”

Hendrycks, Dan, and Thomas Dietterich. "Benchmarking neural network robustness to common corruptions and perturbations." (2019).
https://www.blog.google/technology/health/healthcare-ai-systems-put-people-center
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‘ Adversarial example

= Adversarial ML: Szegedy et al (2013), Goodfellow et al. (2014).
= Def:
o imperceptible change to a test input

o that can make a model change its prediction
o often with a high confidence

“panda” “gibbon”
57.7% confidence 00.3% confidence

Biggio, Battista, et al. "Evasion attacks against machine learning at test time." (2013).
Szegedy, Christian, et al. "Intriguing properties of neural networks." (2013).
Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples.” (2014). 12



‘ Why do they exist?

= Three-class classification problem

Model’s decision
boundary

13



‘ Why do they exist?

1 Adversarial
examples
+ 5 & Model's decision
boundary
o
* s

True decision
boundary

z .

= Adversarial examples = generalization issue

o Gilmer et al.“Adversarial examples are a natural consequence of test error in noise” (2019)
o Other views exist too

14



How to craft adversarial examples?

= Given: a multiclass classifier fy: X - {1,2, ...,K}
(consider a convolutional neural network)
= Task: at the test point x, find a distortion § € A, such that
fo(x) # fo(x + 6)
= Difficult to solve directly due to inequality
= One way to find § Is to solve:

0" = o L(fo(x +0),y)

(consider the cross entropy L(p,q) = —E,[logq])

15



‘ Ditterent attack types

= Basic: §* = max L(fo(x + 6),y)

= Threat models
Attacker’s knowledge on f: white-box vs gray-box vs black-box
Attacker’s misclassification goal: untargeted vs targeted
Amount of perturbation measured by
= [, norm-based attacks
= Visual similarity
= Text similarity (for attack on NLP models)

Most common: white-box, untargeted, norm-based
= Optimization methods: FGSM, PGD, C&W

16



‘ FGSM attack

= Fast Gradient Sign Method (FGSM)

Efficient heuristic for adversarial perturbation 6

l-norm constraint: A = {6 | ||6]|e < €}
(e.g., max change of pixel value < ¢)

) Algorithm (l'gsLOSS(fQ(ZI} +94),y)
A single gradient step of Loss w.r.t. § Pa
Project to the [, -ball by sign|-]:

5" = € signlVsL(fp (x + 6), )] / Use sign()
Sign|-] maps 6 to vertex & 50
Adversarial example: x’ = x + 6* A

Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." (2014).
http://www.cs.cmu.edu/~cliu6/16-883/robust _deep learning.pdf

17


http://www.cs.cmu.edu/%7Ecliu6/16-883/robust_deep_learning.pdf

‘ PGD attack

= Projected Gradient Descent (PGD) attack
Unlike FGSM, use multiple gradient steps to craft an example
After each steps, project onto the set A

= Algorithm
Repeat: &* = Proja(6 + a VsLoss(fa(x + 6),v))

Similar to FGSM, projection A = {6:||5]||. < €} can be done by
applying sign(-) for each coordinate

Projection to other 1,,-ball can be done by normalization

Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." (2017).
18



‘ C&W attack

= Carlini-Wagner (C&W) attack
FGSM / PGD attack: find most effective § inside A
C&W: find an effective and minimal é inside A
Makes sense: distortionT attack successT detectabilityT

= Algorithm
Solve 6" = arggleigl [16]], + A F(x + 6) numerically

F is a function that measures how close the prediction of the
model on x + § Is to the target label for the attack.

Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." (2017).
19



Attack examples

Attacks on Undefended Model
| -BFGS Attack:

CW Attack:

PGD Attack:

L _aug Attack:




‘ Attacks beyond pixel changes

Here at Woull@SE88k Report we work on
. whal we SRS EEEINR e Street.

¥ .. Tvade Date+ Mondaysgbetpll. 2006
« % Company;: AMEROSSI T NTRNGRE
< Symbo]l : AMSN
Current Price: $0,0006
9. Target Price: $0,005
s & Recommendation: STRONG BUY
' Rating: MAX

He assume many of you 1

the promotion" and may have
g&big, fast money doing so.
F

o

Gilmer, Justin, et al. "Motivating the rules of the game for adversarial example research." (2018).

Brown, Tom B., et al. "Adversarial patch.” (2017).
Athalye, Anish, et al. "Synthesizing robust adversarial examples.“ (2018).



‘ Summary of Part 1

= Machine learning models operate under the assumption
that training and test sets have the same distribution

= Due to this, the models are extremely susceptible to out-
of-distribution examples

= Only a tiny change can push an example out of the
distribution, making it adversarial

= Many methods exist that exploit this weakness of models
to craft different types of adversarial examples

22



Part 2/4

2. Can a ML model resist test-time attack?

23



‘ Robustness to adversarial examples

= A cat-and-mouse game

o A new “successful” attack method discovered

o A new “robust” model proposed

o A new “successful attack” method discovered

a
Defense Dataset Distance Accuracy Attack
Buckman et al. (2018) CIFAR 0031 () 0%+ R
Ma et al. (2018) CIFAR 0031 (f ) 5%
Guo et al. (2018) ImageMet  (0L005 (£2) 0% R s
Dhillon et al. (2018)  CIFAR 0.031 (.0 0% B 2T
Mie et al. (2018) ImageNet  (L0G] (£ac) D%+
Song et al. (2018) CIFAR 0,031 (Fae)  DFw _
Samangouei et al. MNIST 0.005 (£2)  =HFFws R
(2018) 0% by llyas et al. 2019 h '
Madry et al. (2018) CIFAR 0,031 (F.)  4T% it maitcie
Na et al. (2018) CIFAR 0,015 (F)  15% (Goodfelow, 2014)

VAV

Defense

GANs
{Samangouei et al., 2018)

Detection
(Ma et al , 2018)

Distillation
(Papemot et al., 2016)

Adversarial training
(Goodfellow et al., 2015)

Attack / Defense Cycle

https://tutorial.trustdeeplearning.com/

Athalye et al. "Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples." (2018).

24
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‘ Adversarial Training

= [ntuition

Adversarial
examples

.
.
.
‘e

Model’s decision
boundary

True decision
i.~ boundary
>

Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." (2017).
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‘ Adversarial Training

-

A 4

Training data >

\_

Generate
adversarial
example

~N

J

Update
model
params

~N

J

Repeat:

1. Sample a minibatch B from the training data

2. For each (x,y) € B, compute an adversarial example x4,
3. Update the model parameters

Onew = 0 — iz:(x,y)EBVHL(fH (Xaav), )

|B|

so that misclassified pints are now correctly classified




‘ Adversarial Training

= Training objective
Conventional:  min Eyy 3 [L(fp (x), y)]

Adv Training: min e o [{r(rslezg( L(fg(x+6),y)]

= Minimax optimization problem
inner problem: find 6 that maximizes loss
outer problem: find 6 that minimizes loss given x + §.

= Difficulty

Theoretically: max L(-) may not be differentiable w.r.t. 8 even if L
Is differentiable w.r.t. (6, x)

Practically: popular alternating optimization can fail to converge

Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." (2017)
Danskin, John M. “he Theory of Max-Min and its Applications to Weapons Allocation Problems.” (1967)
Hamm, Jihun & Noh, Yung-kyun "K-beam minimax: Efficient optimization for deep adversarial learning" (2018) 27



‘ Adversarial Training

= Optimization matters in practice
Inner maximization is solved only approximately during training
Quality of the final solution is dependent on maximizer
Models trained with FGSM are not robust to PGD attacks

] MNIST ] CIFAR10
_| — FGsM ] — Fesm
— PGD ] — PGD

o Vo

Models trained against FGSM

28



‘ Adversarial Training

= PGD attack examples generated against a robust model (trained

with adversarial training)

Attacks on Undefended Model

oo EITICENICINGR
s EONNOIEINGIEY

CW Attack: 71/0&{[‘40\(‘,?
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‘ Pros and cons of Adversarial Training

= Pros
Provides empirical robustness
No change required at test time
Easy to integrate with different threat models and procedures

= Cons
Success dependent on threat model used during training
Models may not be robust to stronger adversaries
Training takes significantly longer
Accuracy on clean test set decreases

30



Accuracy-robustness tradeoff

= Models with high accuracy are usually less robust
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Su, Dong, et al. "Is Robustness the Cost of Accuracy?--A Comprehensive Study on the Robustness of 18 Deep Image Classification Models." (2018).
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‘ Robust vs natural error

= Def: robust, natural, boundary loss

Lyobust (f) — Loturaitl) + Lboundary (f)
D/\ En(fr<o)] / h \
E[1{3X' € B(X,€) s.t. F(X)Y <0}] E[1{ X € B(DB(f),€), f(X)Y > 0}]

Zhang, Hongyang, et al. "Theoretically principled trade-off between robustness and accuracy." (2019).
32



TRADES

= Idea: minimize natural loss + approx boundary loss

min EGeyenlL(fa(),3) + B, max  L(fo (o), fo(e )]

1.0

0.5

0.0
0.0 0.5 1.0 0.0 0.5 1.0

Zhang, Hongyang, et al. "Theoretically principled trade-off between robustness and accuracy." (2019).
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Data manifold-point ot view

= Manifold assumption:

Data distribution has a support on a low-dimensional (nonlinear)
manifold

Off-manifold
(orthogonal)

34



‘ On/off-manifold adversarial examples

Two types of adversarial examples

(a) regular

adversarial example .
on-manifold

(b) adversarial example

Classifier’s
Decision
Boundary

1nva11d
adversarlal example
True

ecision

Boundary Class Manifold “6”

Class Manifold “5”

Stutz, David, Matthias Hein, and Bernt Schiele. "Disentangling adversarial robustness and generalization." (2019).
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On-/off-manifold adversarial examples
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Stutz, David, Matthias Hein, and Bernt Schiele. "Disentangling adversarial robustness and generalization." (2019).
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‘ Dual manifold adversarial training

= Solve minEyy)ep[L(fo(x),y) + 'Bx’énBaéc(,e) L(fo(x), fo(x")
+f max L(fo(x), fo(G(z + D))]

Standard (Off-Manifold) Adversarial Training

Projection

__ . o

On-Manifold Adversarial Training

v HN EET N
_|_

>0 N
Q

Gz + \)

Lin, Wei-An, et al. "Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks." (2020).



On-Manifold AT Cannot Defend Standard
Attacks and Vice Versa

Standard Accuracy Accuracy on PGD-50 Accuracy on OM-PGD-50
100 100 100
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Figure 3: On-manifold adversarial training does not provide robustness to standard attacks. Standard

adversarial training does not provide robustness to on-manifold attacks. Left: standard accuracy.

Middle: classification accuracy when the trained models are attacked by PGD-50. Right: classification
accuracy when the trained models are attacked by OM-PGD-50.

Lin, Wei-An, et al. "Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks." (2020).
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‘ Summary of Part 2

= Several defenses have been proposed to make machine
learning models robust to adversarial examples

Only adv training seems to be successful (to some degrees)
There is an accuracy-robustness tradeoff.

= Adversarial examples may be more than one type
Typical adversarial examples are off-manifold type
On-manifold adversarial examples are generalization problem
Robustness to one type + robustness to the other type

= Dual adversarial training improve robustness to both types

39



Part 3/4

3.

When is a ML model provably robust?

40



‘ Margin and empirical robustness

= Defense methods discussed so far improve in empirical robustness
compared to naive models
= Def: margin r(x):= distance from x to nearest decision bndry
r(x):=min|lx —x'|| s.t. f(x')# f(x)
X

= If risthe true margin at x
g(x) is robust for any perturbation ||§]| < r
Prediction cannot with § weaker than r

= Numerically compute 7;,,,,,, (by €.g., C&W)

Is this sufficient? What guarantees do we have?

T = Thum

= We want certified radius
<ri

rC@T't

Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).

41



‘ Certification methods

max Loss(fy(z + 9),y) < maxLoss(f;" (z + §),y) < Loss(f5"*(z, A),y)

deA deA

.
> Z <

Maximization problem is now
a convex linear program
[Wong and Kolter, 2018]

U

A
Y
I B

¢
Dual from [Wong and Kolter,
2018], also independently
derived via hybrid zonotope
[Mirman et al., 2018] and
forward Lipschitz arguments
[Weng et al., 2018]

Minimizing the computed bound on the loss leads to a guaranteed bound
on worst-case loss (or error) for any norm-bounded adversarial attack

https://adversarial-ml-tutorial.org/

Wong, Eric, and Zico Kolter. "Provable defenses against adversarial examples via the convex outer adversarial polytope." (2018). 4


https://adversarial-ml-tutorial.org/

‘ Certification methods

= Simple 2D toy problem 10
o 2-100-100-100-2 MLP network

o Trained with Adam (learning 05
rate = 0.001, no
hyperparameter tuning) 00

100.0%

= Performance of the model
against real attacks on MNIST 200%

X 70.0%
with e = 0.1 ()
. ©0] 50.0%

40.0%

30.0%

20.0%

10.0%

0.0%
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Standard training Robust convex training
100%
82%

1.1%

Standard training

11% 2.1% 28% 3.7%

Our method

m No attack mFGSM PGD Robust bound

https://adversarial-ml-tutorial.org/

Wong, Eric, and Zico Kolter. "Provable defenses against adversarial examples via the convex outer adversarial polytope." (2018).

43


https://adversarial-ml-tutorial.org/

‘ Certification 1s not easy

= Shortcomings

Even optimal convex relaxation for ReLU networks cannot obtain
tight bounds in all cases

SDP-based bound for optimization are computationally expensive
and can’t scale to large networks

Interval bound propagation-based method often leads to loose
certification bounds
= Ideally, we want a certification methods
Tight bounds
Scalable to large models
Independent of model architecture
High confidence

Salman, Hadi, et al. "A convex relaxation barrier to tight robustness verification of neural networks." (2019).
Raghunathan, Aditi, et al. "Semidefinite relaxations for certifying robustness to adversarial examples." (2018).
Gowal, Sven, et al. "On the effectiveness of interval bound propagation for training verifiably robust models." (2018). 44



‘ Smoothed classifier

decision bndry of f

= Suppose f: X = {1,2,...,C} s a classifier
= |¥ , f(x) = panda

x+e€ €~N(0,0%])

f(x") = panda, f(x") = gibbon, f(x) = cat
= What's the histogram of f(x") if repeated for a large number ?
o histogram — P[f(x + €) = c] with prob 1

~Salman, Hadi, et al. "Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers.™ (2020).
Li B et al. “Certified adversarial robustness with additive noise.” (2018).
Lecuyer, Mathias, et al. "Certified robustness to adversarial examples with differential privacy." (2019). 45
Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).



‘ Smoothed classifier

m g(x):=argmaxP[f(x +¢€) =]
C
“random” or “smoothed” version of f(x).

g(x) = the most probable prediction by f of
random Gaussian corruptions of x

Example: consider the input x = g

Suppose that when f classifies V' (x, 521) [§ >

©s is returned with probability 0.80
@ is returned with probability 0.15

L is returned with probability 0.05
Then g(x) = %a

= Why do we care?

Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).

46



‘ Randomized Smoothing

= Consider margin of the “smoothed” classifier g(x)
= Recall margin is distance from x to the nearest decision bndry

= Numerical margin: 7 < Thyum

= Claim: R(x) <r

True margin of smoothed classifier g(x) is lower-bounded by some
computable value R(x) called Certified Radius

That is, g(x) is provably robust by at least r

Salman, Hadi, et al. "Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers." (2020).

Li B et al. “Certified adversarial robustness with additive noise.” (2018).

Lecuyer, Mathias, et al. "Certified robustness to adversarial examples with differential privacy." (2019). 47
Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).



‘ Certified Radius

* Let p, be the probability of the top class (<)
* Let pg be the probability of the runner-up class ().

* Then g provably returns the top class %s within an
¢, ball around x of radius

R==(®(pa) — P (pp))
where ®~1 is the inverse standard Gaussian CDF.

ICDF of the Gaussian distribution

b1 1 /

-
i

—
L i L f L L L L .
] 01 02 03 04 05 06 07 08 09 1
x

y=F{x

A bh Lo

0.15

Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).
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‘ Proof

Let f: R"™ - [0,1] and define g as follows:
fG) = (f*N(0,D)x) =

(2) Rf(t)exp<——||x—t||2>dt
)2 R

The smoothed function f is known as the Weierstrass transform, and it has a
property that it induces smoothness.

= Lemma 1: The function f is \/% - Lipschitz.

= Lemma 2: (f satisfies an even stronger non-linear smoothness property)

1
Let ®(a) = j exp(——s >ds.
T
For any function f:R™ - [0,1], the map x » &1 (f(x)) is 1 — Lipschitz.

Salman, Hadi, et al. "Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers." (2020).
Li B et al. “Certified adversarial robustness with additive noise.” (2018).

Lecuyer, Mathias, et al. "Certified robustness to adversarial examples with differential privacy." (2019).

Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).



Lemma 2 allows to obtain a certified robustness guarantee for any classifier.

Let f;: R™ - [0,1] be the output of the smoothed classifier mapping a point

x € R" to the probability that it belongs to a class c;. Assuming the smooth classifier
assign x to the class c, with probability p, = f,(x) and denoting the cz be the other class
such that pg = fz(x) < pa.

The by Lemma 2, under any perturbation § € R" of x.

o7 (fa@) — @7 (G + ) <1151l
For adversarial §, f,(x + &) < fz(x + &) leading to

o7 (fa@) = @7 (foGx + ) < 118112
Using Lemma 2 on fz and that fz(x) < fz(x + §) we have

o (fx+ ) = & (fo(0)) < 1162

Combining the previous two equations we have

1
E[q’_l(m(x)) — @ H(pp ()] < 1812

Salman, Hadi, et al. "Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers." (2020).
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= Using f(x) = (f * IV (0, I))(x) and ®(a) = \/%_nf_aoo exp (—%Z—ZZ) ds we have
~ [0 (pa() — &7 (ps (0] < 1151

as the lower bound on the minimum ¢, adversarial perturbation needed to
change the classification of the point x from class c, to c.

= If cg is the runner up class returned by the smoothed classifier for the point
x, this lower bound is minimized.

= Both lemmas provide the same robustness guarantee for small gaps (p, —
pg), but lemma 2 is much better for large gaps (when the gap becomes 1,

T

lemma 2 gives an infinite radius while the lemma 1 gives a radius \/;

Salman, Hadi, et al. "Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers." (2020).
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‘ Quality of certification

1.0
— 0=0.25
0.8 —— o=0.50
) —— 0=1.00
E 06 N R B Bl undefended
=
T3
;:j 0.4
5 e
(5]
0.2 ‘“\.I‘
| B

1.5 2.0 2.5 3.0 35 4.0
radius

Note: the certified radii are much smaller than this noise.

Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).
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‘ Caveats of Randomized Smoothing

= The smoothed classifier cannot be computed exactly (intractable)

= Monte Carlo estimates are used to compute °
a lower bound on P,

A large # of samples required for high confidence % )

Needs to be repeated for each point x ) /

Computationally demanding

10° 10* 10°
number of samples

= Smoothed classifier g are often less accurate than f
The larger the certified radius, the smaller the certified accuracy is

= Certified radius is often quite smaller than empirical margin in
practice

Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).
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Improving robustness — adversarial training

= SmoothAdv: Adversarially train smoothed classifier g
= Def:
o Soft classifier F: R™ — P(Y) (probability of each class)
o Smoothed soft classifier G(x) = E; (o020 F (x + 1)
= Adversarial example of G (x)

0 Xgay =arg  max Losscg(G(x'),y)
[lx"—x||2<€

o Approximate the loss gradient by Monte Carlo sampling i.e.
v, [—log IEn~N(O,Gz,)F(x + n)] =V, l—log (% Lt F(x+ m))].
o Use PGD attack

Salman, Hadi, et al. "Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers." (2020).
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Results - SmoothAdv
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Figure 1: Results of adversarially trained smooth classifiers on CIFAR-10
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Figure 2: Results of adversarially trained smooth classifiers on ImageMet

Salman, Hadi, et al. "Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers." (2020).
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‘ Improving radius - direct maximization

= SmoothAdyv is slow
= MACER: directly maximize certified radius by minimizing
classification loss + robustness loss

Lig=y t Lgm=y, rRGgx»)<p)
(certirifed radius R(g,x,y) = > [® ™ (pa(x)) — ®~*(pp(x))])
Similar to SmoothAdv, use soft classifiers and Monte Carlo:
V! [—log Ep-a(002n)F(x + n)] = Vyr [—log (% L, F(x + m))]-

®~1 has exploding gradients near 0 and 1
= Use hinge loss for numerical stability.

Zhai, Runtian, et al. "Macer: Attack-free and scalable robust training via maximizing certified radius." (2020).
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‘Results - MACER

Table 3: Training time and performance of o = (.25 models.

Dataset Model sec/epoch | Epochs | Total hrs | ACR

Cohen-0.25 (Cohen et al., 2019) 314 150 1.31 0.416

Cifar-10 | Salman-0.25 (Salman et al., 2019) 1990.1 150 82.92 0.538

MACER-0.25 (ours) 504.0 440 61.60 0.556

Cohen-0.25 (Cohen et al., 2019) 2154.5 90 53.86 0.470

ImageNet | Salman-0.25 (Salman et al., 2019) 7723.8 90 193.10 | 0.528
MACER-0.25 (ours) 3537.1 120 117.90 | 0.544

Zhai, Runtian, et al. "Macer: Attack-free and scalable robust training via maximizing certified radius." (2020).
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‘ Denoised Smoothing

= Smoothed classifier often performs poorly

o Requires retraining of classifiers (Gauss Aug, SmoothAdv, MACER)
= Denoised smoothing: improve classifier accuracy without retraining

o ldea: Insert a denoising front-end to pretrained classifiers

Custom-trained
Denoiser

=

Our Framework

===

e

Googal loud
- =

<= clarifai aws

b
b |

-

-

I ueydajg ]

= T

(z uonenba)
SNIPEJ PRIILAD

[

Salman, Hadi, et al. “Denoised smoothing: A provable defense for pretrained classifiers." (2020).
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Pros and Cons of Randomized Smoothing

= Pros
Relatively scalable to large models and datasets
Independent of model architecture
Numerical approximate by Monte Carlo is straightforward
= Cons
Accurate estimate requires more computation
Certifiable radius is rather small
Curse of dimensionality: largest £, radius that can be certified
decreases as 0(1/dY?-1/P) = 0(1/d*/?) forp > 2
Many open problems

Kumar, Aounon, et al. "Curse of dimensionality on randomized smoothing for certifiable robustness." (2020).
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‘ Summary of Part 3

= Various certification methods have been proposed a provably

robust alternative to empirical methods of increasing
robustness

= Approaches based on convex relaxation, SDP are

computationally expensive to be scalable to large networks
and models

= Randomized smoothing is the current state-of-the-art method

for certification but has limitations when trying to certify in
norms other that ¢,
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Part 4/4

2. Can you trust others’ data and models?
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‘ Training-time adversarial attack

= Test-time attack

© Victim S

Blackbox

I
I
I
I
I
C— I e
-+ B+
1
I
I
I
I

Training time

&2 perturbation

. 1 of class 0
: > Class 0 data of class
'.-! > Class 1 Poisoned data set

oF

g

D ML algorithm
Test time

o Attacker have influence only in test time
o We assumed the model is trustworthy albeit vulnerable

o Butwhat if it isn’t?
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‘ Training-time adversarial attack

= Training-time attack

Public o
Attackery @ Victim

data source

Blackbox
| |

Training time Test time

[ 3O

-y ata of class 0
:‘.> Class 0 data of class
i % Class | Poisoned data set

D ML algorithm

®
FILE 2
Class 0 Class |

Poisoning process

[T

o Attacker can “poison”
= Data
] Model
= Training procedure
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‘ Data poisoning

= Goal of data poisoning

o Modify training data so that learned model using poisoned data perform
In accordance with the attacker’s intent

o Example: lower the performance

Original Dataset Good classifier learnt Poisoned Dataset Bad classifier learnt

+ F ++ + F ++ + F ++
== e ==
== + == + == -
+ =+ 4 + =+ 4+ += 4+ 4+
=+ 4 + +

+~ + + o + + * o + + * >

- - - e +
-+

Poisoned data




‘ Poisoning SVM, LR, OLS
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Figure |: Training-set attack on SVM. The “alcohol™ feature is marked by a red star in (b.c).
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Figure 2: Training-set attack on logistic regression. The 20th feature on “frequency of word credit™ is marked
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Figure 3: Training-set attack on OLS

Mei, Shike, and Xiaojin Zhu. "Using machine teaching to identify optimal training-set attacks on machine learners." (2015).



Poisoning DNN

Label: Fish Label: Fish

—~

Asmall
perturbation
to one
training
example:

Can change
multiple test
predictions:

Orig (confidence): Dog (97%) Dog (98%) Dog (98%) Dog (29%)
Mew (confidence): Fish (97%) Fish (93%) Fish (87%) Fish (63%)

Dog (98%)
Fish (52%)

Shafahi, Ali, et al. "Poison frogs! targeted clean-label poisoning attacks on neural networks." (2018).
Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." (2017).
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Poisoning DNN

Target instances from Fish class

Clean
Base

Poison
instances
made for
fish class
from dog
base
instances

Target instances from Dog class

Poisons
made for
dog class
from fish
bases

Shafahi, Ali, et al. "Poison frogs! targeted clean-label poisoning attacks on neural networks." (2018).
Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." (2017).
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‘ Data poisoning

= Assume
X = {x4, ..., xy} : Original training examples
u = {uq, ..., uy} : poisoned examples
X,q . Clean validation data

= Data poisoning as a bilevel problem:
max L(fy(Xpa)) s.t. 0% = argmain L(fo(X Uu))
u

It's a hard non-convex problem. Alternating optimization isn’t a
principled approach

Mufioz-Gonzélez, Luis, et al. "Towards poisoning of deep learning algorithms with back-gradient optimization.“ (2017).
Mehra, Akshay, and Jihun Hamm. "Penalty method for inversion-free deep bilevel optimization." (2019).
Huang, W. Ronny, et al. "Metapoison: Practical general-purpose clean-label data poisoning." (2020).
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Poisoning can even lower certified radius

Target class

£ &8

Non-target classes
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Figure 1. Overview of our poisoning against certified defenses (PACD) attack which generates poisoned data to reduce the certified robustness
of the victim’s model trained with methods such as Gaussian data augmentation [ 7], SmoothAdv[2#] and MACER][ 5] on a target class.
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Mehra, Akshay, et al. "How Robust are Randomized Smoothing based Defenses to Data Poisoning?." (2020).
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‘ Backdoor attacks

= Simultaneous training/test-time attack

data source

Publi .
Attackeru ublic @ Victim 8 &2 Backdoor trigger

Blackbox =1, data of class 0

=,7 :;> Class 0
i
b — -+ | - = i C
D — ! > Class | a Poisoned data set

@éz D ML algorithm

)
FILE 2
Class 0 Class |

Poisoning process

Training time Test time

o Training: adversary adds a “trigger” to a small portion of data with a
target label y’

o Victim trains the model using poisoned data
o Test 1: input x without trigger — classified correctly

o Test 2: input x with trigger —» misclassified as y' (regardless of its true
label of x)

Gu, Tianyu, et al. "Badnets: Evaluating backdooring attacks on deep neural networks." (2019).
Chen, Xinyun, et al. "Targeted backdoor attacks on deep learning systems using data poisoning.” (2017).
Shafahi, Ali, et al. "Poison frogs! targeted clean-label poisoning attacks on neural networks." (2018). 70



Gu, Tianyu, et al. "Badnets: Evaluating backdooring attacks on deep neural networks." (2019).
Chen, Xinyun, et al. "Targeted backdoor attacks on deep learning systems using data poisoning.” (2017).
Shafahi, Ali, et al. "Poison frogs! targeted clean-label poisoning attacks on neural networks." (2018).
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Detfense against data poisoning

= Data Sanitization

Before attack After attack After sanitization

= Data Augmentation

| Poison Success (100%) Validation Accuracy (100%) Poison Success (10%)  Validation Accuracy (10%)

Baseline 100% 85% 57% 04%
mixup 100% 85% 42%% 05%
CutMix 36% 049% 23% 5%

Koh, Pang Wei, Jacob Steinhardt, and Percy Liang. "Stronger data poisoning attacks break data sanitization defenses." (2018).
Borgnia, Eitan, et al. "Strong Data Augmentation Sanitizes Poisoning and Backdoor Attacks Without an Accuracy Tradeoff." (2020).
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Detfense against data poisoning

= Weight regularization

0.14 0.14
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Carnerero-Cano, Javier, et al. "Regularisation can mitigate poisoning attacks: A novel analysis based on multiobjective bilevel optimisation." (2020).
Peri, Neehar, et al. "Deep k-nn defense against clean-label data poisoning attacks." (2020). 3



‘ Detending against backdoor attacks

= Models with backdoors are different from models without

A : B : C - - - Decision Boundary
Clean I ! ® Label A Input
Model > ' 1 Normal A Label B Input
" Minimum A needed to Dimension W Label Clnput
misclassify all samples into A Adversarial Input
' Trlgger A A
Dimension Minimum A needed to
Infected B i | ;Eilasmfy all samples into A
Model : B : C Normal
| Dimension

Wang, Bolun, et al. "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks." (2019).
Tran, Brandon et al. "Spectral signatures in backdoor attacks." (2018).
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‘ Clean label backdoor attacks

= Naively poisoned data have wrongly-labeled examples

Incorrectly labeled
as airplane

Gu et al. (2017)

Clean-label baseline

(GAN-bazed (ours)

= Clean-labeled poison data have correct labels
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Turner, Alexander, Dimitris Tsipras, and Aleksander Madry. "Clean-label backdoor attacks." (2018).

Zhao, Shihao, et al. "Clean-label backdoor attacks on video recognition models." (2020).
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Avoiding detection

= Detection methods assume a fixed trigger pattern
Benign Image Poisoned Image

BadNets

Train

Trigger

Salem, Ahmed, et al. "Dynamic backdoor attacks against machine learning models." (2020).
Nguyen, Anh, and Anh Tran. "Input-aware dynamic backdoor attack." (2020).
Li, Yuezun, et al. "Backdoor Attack with Sample-Specific Triggers." (2020). 76



‘ Avoiding detection

= Use a randomly-generated trigger for each image
Uniform Distribution

1 Il

2 BaN ||t —-@h. x,. HMbd

_—
G

Salem, Ahmed, et al. "Dynamic backdoor attacks against machine learning models." (2020).
Nguyen, Anh, and Anh Tran. "Input-aware dynamic backdoor attack." (2020).
Li, Yuezun, et al. "Backdoor Attack with Sample-Specific Triggers." (2020).



‘ Avoiding detection

= Use input-dependent trigger (unique for each image)

Trigger2

automobile automaobile

Salem, Ahmed, et al. "Dynamic backdoor attacks against machine learning models." (2020).
Nguyen, Anh, and Anh Tran. "Input-aware dynamic backdoor attack." (2020).
Li, Yuezun, et al. "Backdoor Attack with Sample-Specific Triggers." (2020).
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Avoiding detection

= Use Invisible trigger using steganography

Poisoned Image

o —— .—r Goldfish

Classifier

—_— . — Goldfish

Classifier

Benign Image

Trigger

Salem, Ahmed, et al. "Dynamic backdoor attacks against machine learning models." (2020).
Nguyen, Anh, and Anh Tran. "Input-aware dynamic backdoor attack." (2020).
Li, Yuezun, et al. "Backdoor Attack with Sample-Specific Triggers." (2020).
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‘ Summary of Part 4

= It's dangerous to use data or models from unreliable sources

= Attacker can exploit these vulnerabillities to either
Lower the model’s performance
Take control of the model at test time (called backdoor attack)

= Backdoored models
Show high-performance on clean dataset
Only affected when attacker uses a trigger at test time

= Many defense and attack methods proposed
= Many open problems remain
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‘ Conclusion

= Machine learning has seen tremendous success in several areas, however
the key assumption about training/test distributions may not hold in practice,
exposing significant vulnerabilities

= Adversarial examples demonstrate the failure of state-of-the-art models
when the assumptions are broken

= Several heuristic ways were proposed to make models robust to adversarial
examples but were later broken by stronger adversaries

= Certified robustness is emerging as the gold standard to measure the
performance of models at test time but they are computationally demanding
and practically very small

= The data hungry nature of machine learning and the difficulty of obtaining
well curated labeled data makes machine learning vulnerable to poisoning

= Oultlier detection can help find poisoned data; model cleansing can help find
pointed model. The cat-and-mouse game is still ongoing
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