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Success of machine learning
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But is machine learning reliable?

5

Finlayson, Samuel G., et al. "Adversarial attacks against medical deep learning systems." (2018). 



But is machine learning reliable?
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But is machine learning reliable?
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What is wrong with ML?

8



What is wrong with ML?

 Basic assumption of ML:
Training and test sets have the same distribution

𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥,𝑦𝑦 = 𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥,𝑦𝑦

 Most benchmark datasets have this property
 MNIST, EMNIST
 SVHN
 CIFAR10/100
 Imagenet
 COCO
 …
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Can this hold in reality?

 Difficult because
 ML models are now increasingly being deployed in the wild
 Impossible to train on all possible scenarios that can be

encountered at test time
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https://www.youtube.com/watch?v=OOT3UIXZztE
https://www.cnet.com/news/face-masks-are-thwarting-even-the-best-facial-recognition-algorithms-study-finds/
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Can this hold in reality?

 Performance of the model drops significantly in presence of 
common corruptions in the data

 “AI systems need to be trained to handle environmental differences like
lighting, which can vary among clinics, impacting the model’s predictions.”
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Hendrycks, Dan, and Thomas Dietterich. "Benchmarking neural network robustness to common corruptions and perturbations." (2019).
https://www.blog.google/technology/health/healthcare-ai-systems-put-people-center
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Adversarial example

 Adversarial ML: Szegedy et al (2013), Goodfellow et al. (2014).

 Def:
 imperceptible change to a test input
 that can make a model change its prediction
 often with a high confidence

12

Biggio, Battista, et al. "Evasion attacks against machine learning at test time." (2013).
Szegedy, Christian, et al. "Intriguing properties of neural networks." (2013).
Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." (2014).
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Why do they exist?

 Three-class classification problem
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Why do they exist?

 Adversarial examples ≅ generalization issue
 Gilmer et al.“Adversarial examples are a natural consequence of test error in noise” (2019)
 Other views exist too

14
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How to craft adversarial examples?

 Given: a multiclass classifier 𝑓𝑓𝜃𝜃:𝑋𝑋 → {1, 2, … ,𝐾𝐾}
(consider a convolutional neural network)

 Task: at the test point 𝑥𝑥, find a distortion 𝛿𝛿 ∈ Δ, such that
𝑓𝑓𝜃𝜃 𝑥𝑥 ≠ 𝑓𝑓𝜃𝜃(𝑥𝑥 + 𝛿𝛿)

 Difficult to solve directly due to inequality
 One way to find 𝛿𝛿 is to solve:

𝛿𝛿∗ = 𝐦𝐦𝐦𝐦𝐦𝐦
𝛿𝛿∈Δ

𝐿𝐿(𝑓𝑓𝜃𝜃(𝑥𝑥 + 𝛿𝛿),𝑦𝑦)
(consider the cross entropy  𝐿𝐿 𝑝𝑝, 𝑞𝑞 = −𝐸𝐸𝑝𝑝 log 𝑞𝑞 )
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Different attack types

 Basic: 𝛿𝛿∗ = max
𝛿𝛿∈Δ

𝐿𝐿(𝑓𝑓𝜃𝜃(𝑥𝑥 + 𝛿𝛿),𝑦𝑦)

 Threat models
 Attacker’s knowledge on 𝑓𝑓: white-box vs gray-box vs black-box
 Attacker’s misclassification goal: untargeted vs targeted
 Amount of perturbation measured by

 𝑙𝑙𝑝𝑝 norm-based attacks
 Visual similarity
 Text similarity (for attack on NLP models)
 …

 Most common: white-box, untargeted, norm-based
 Optimization methods: FGSM, PGD, C&W

16



FGSM attack 

 Fast Gradient Sign Method (FGSM)
 Efficient heuristic for adversarial perturbation 𝛿𝛿
 𝑙𝑙∞-norm constraint: Δ = 𝛿𝛿 𝛿𝛿 ∞ ≤ 𝜖𝜖}

(e.g., max change of pixel value ≤ 𝜖𝜖)

 Algorithm
 A single gradient step of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 w.r.t. 𝛿𝛿
 Project to the  𝑙𝑙∞-ball by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ :

𝛿𝛿∗ = 𝜖𝜖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛻𝛻𝛿𝛿𝐿𝐿 𝑓𝑓𝜃𝜃 𝑥𝑥 + 𝛿𝛿 ,𝑦𝑦
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[⋅] maps 𝛿𝛿 to vertex

 Adversarial example: 𝑥𝑥′ = 𝑥𝑥 + 𝛿𝛿∗

17
Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." (2014).
http://www.cs.cmu.edu/~cliu6/16-883/robust_deep_learning.pdf

𝒙𝒙
Use 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(⋅)

http://www.cs.cmu.edu/%7Ecliu6/16-883/robust_deep_learning.pdf


PGD attack

 Projected Gradient Descent (PGD) attack
 Unlike FGSM, use multiple gradient steps to craft an example
 After each steps, project onto the set Δ

 Algorithm
 Repeat: 𝛿𝛿∗ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗Δ 𝛿𝛿 + 𝛼𝛼 ∇𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓𝜃𝜃 𝑥𝑥 + 𝛿𝛿 ,𝑦𝑦
 Similar to FGSM, projection Δ = 𝛿𝛿: ||𝛿𝛿||∞ ≤ 𝜖𝜖 can be done by

applying 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ for each coordinate
 Projection to other 𝑙𝑙𝑝𝑝-ball can be done by normalization

18

Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." (2017).



C&W attack

 Carlini-Wagner (C&W) attack
 FGSM / PGD attack: find most effective 𝛿𝛿 inside Δ
 C&W: find an effective and minimal 𝛿𝛿 inside Δ
 Makes sense: distortion↑ attack success↑ detectability↑

 Algorithm
 Solve 𝛿𝛿∗ = argmin

𝛿𝛿∈Δ
||𝛿𝛿||𝑝𝑝 + 𝜆𝜆 𝐹𝐹(𝑥𝑥 + 𝛿𝛿) numerically

 𝐹𝐹 is a function that measures how close the prediction of the
model on 𝑥𝑥 + 𝛿𝛿 is to the target label for the attack.

19
Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." (2017).



Attack examples
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Attacks beyond pixel changes
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Gilmer, Justin, et al. "Motivating the rules of the game for adversarial example research." (2018).
Brown, Tom B., et al. "Adversarial patch." (2017).
Athalye, Anish, et al. "Synthesizing robust adversarial examples.“ (2018).



Summary of Part 1

 Machine learning models operate under the assumption
that training and test sets have the same distribution

 Due to this, the models are extremely susceptible to out-
of-distribution examples

 Only a tiny change can push an example out of the
distribution, making it adversarial

 Many methods exist that exploit this weakness of models
to craft different types of adversarial examples
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Part 2/4

1. How robust is naïve ML model?
2. Can a ML model resist test-time attack?
3. When is a ML model provably robust?
4. Can you trust others’ data and models?
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Robustness to adversarial examples

 A cat-and-mouse game
 A new “successful” attack method discovered
 A new “robust” model proposed
 A new “successful attack” method discovered
 …

24

https://tutorial.trustdeeplearning.com/
Athalye et al. "Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples." (2018).

0% by Ilyas et al. 2019

https://tutorial.trustdeeplearning.com/


Adversarial Training

 Intuition

25

Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." (2017).

Adversarial
examples

Model’s decision 
boundary

True decision 
boundary



Adversarial Training

Repeat:
1. Sample a minibatch 𝐵𝐵 from the training data
2. For each 𝑥𝑥,𝑦𝑦 ∈ 𝐵𝐵, compute an adversarial example 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎
3. Update the model parameters 

𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜃𝜃 − 𝜂𝜂
|𝐵𝐵|
Σ 𝑥𝑥,𝑦𝑦 ∈B∇𝜃𝜃𝐿𝐿 𝑓𝑓𝜃𝜃 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑦𝑦

so that misclassified pints are now correctly classified

26
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Adversarial Training

 Training objective
 Conventional: min

𝜃𝜃
𝐸𝐸 𝑥𝑥,𝑦𝑦 𝐿𝐿 𝑓𝑓𝜃𝜃 𝑥𝑥 ,𝑦𝑦

 Adv Training: min
𝜃𝜃
𝐸𝐸 𝑥𝑥,𝑦𝑦 [max

𝛿𝛿∈Δ
𝐿𝐿(𝑓𝑓𝜃𝜃 𝑥𝑥 + 𝛿𝛿 ,𝑦𝑦)]

 Minimax optimization problem
inner problem: find 𝛿𝛿 that maximizes loss
outer problem: find 𝜃𝜃 that minimizes loss given 𝑥𝑥 + 𝛿𝛿.

 Difficulty
 Theoretically: max 𝐿𝐿(⋅) may not be differentiable w.r.t. 𝜃𝜃 even if 𝐿𝐿

is differentiable w.r.t. (𝜃𝜃, 𝑥𝑥)
 Practically: popular alternating optimization can fail to converge

27

Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." (2017)
Danskin, John M. “he Theory of Max-Min and its Applications to Weapons Allocation Problems.” (1967) 
Hamm, Jihun & Noh, Yung-kyun "K-beam minimax: Efficient optimization for deep adversarial learning" (2018)



Adversarial Training

 Optimization matters in practice
 Inner maximization is solved only approximately during training
 Quality of the final solution is dependent on maximizer
 Models trained with FGSM are not robust to PGD attacks

28

Models trained against FGSM



Adversarial Training

 PGD attack examples generated against a robust model (trained 
with adversarial training)
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Pros and cons of Adversarial Training

 Pros
 Provides empirical robustness
 No change required at test time
 Easy to integrate with different threat models and procedures

 Cons
 Success dependent on threat model used during training
 Models may not be robust to stronger adversaries
 Training takes significantly longer
 Accuracy on clean test set decreases

30



Accuracy-robustness tradeoff

 Models with high accuracy are usually less robust

31

Su, Dong, et al. "Is Robustness the Cost of Accuracy?--A Comprehensive Study on the Robustness of 18 Deep Image Classification Models." (2018).



Robust vs natural error

 Def: robust, natural, boundary loss

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓 = 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓 + 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓

32

Zhang, Hongyang, et al. "Theoretically principled trade-off between robustness and accuracy." (2019).

𝐸𝐸 1 𝑓𝑓 𝑋𝑋 𝑌𝑌 ≤ 0

𝐸𝐸 1 𝑋𝑋 ∈ 𝐵𝐵 𝐷𝐷𝐷𝐷 𝑓𝑓 , 𝜖𝜖 , 𝑓𝑓 𝑋𝑋 𝑌𝑌 > 0𝐸𝐸 1 ∃𝑋𝑋′ ∈ 𝐵𝐵 𝑋𝑋, 𝜖𝜖 𝑠𝑠. 𝑡𝑡. 𝑓𝑓 𝑋𝑋′ 𝑌𝑌 ≤ 0



TRADES

 Idea: minimize natural loss + approx boundary loss

33

min
𝜃𝜃
𝐸𝐸 𝑥𝑥,𝑦𝑦 ∈𝒟𝒟[𝐿𝐿 𝑓𝑓𝜃𝜃 𝑥𝑥 ,𝑦𝑦 + 𝛽𝛽 max

𝑥𝑥′∈ ℬ 𝑥𝑥,𝜖𝜖
𝐿𝐿(𝑓𝑓𝜃𝜃 𝑥𝑥 , 𝑓𝑓𝜃𝜃 𝑥𝑥′ )]

Zhang, Hongyang, et al. "Theoretically principled trade-off between robustness and accuracy." (2019).



 Manifold assumption:
Data distribution has a support on a low-dimensional (nonlinear)
manifold

Data manifold-point of view

34

Off-manifold 
(orthogonal)

𝑿𝑿



On/off-manifold adversarial examples

35

Stutz, David, Matthias Hein, and Bernt Schiele. "Disentangling adversarial robustness and generalization." (2019).

 Two types of adversarial examples



On-/off-manifold adversarial examples

36

Stutz, David, Matthias Hein, and Bernt Schiele. "Disentangling adversarial robustness and generalization." (2019).



 Solve   min
𝜃𝜃
𝐸𝐸 𝑥𝑥,𝑦𝑦 ∈𝒟𝒟[𝐿𝐿 𝑓𝑓𝜃𝜃 𝑥𝑥 ,𝑦𝑦 + 𝛽𝛽 max

𝑥𝑥′∈ ℬ 𝑥𝑥,𝜖𝜖
𝐿𝐿 𝑓𝑓𝜃𝜃 𝑥𝑥 , 𝑓𝑓𝜃𝜃 𝑥𝑥′

+𝛽𝛽max
𝜆𝜆

𝐿𝐿 𝑓𝑓𝜃𝜃 𝑥𝑥 , 𝑓𝑓𝜃𝜃 𝐺𝐺(𝑧𝑧 + 𝜆𝜆 ]

Dual manifold adversarial training

37

Lin, Wei-An, et al. "Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks." (2020).



On-Manifold AT Cannot Defend Standard 
Attacks and Vice Versa

38

Lin, Wei-An, et al. "Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks." (2020).



Summary of Part 2

 Several defenses have been proposed to make machine 
learning models robust to adversarial examples
 Only adv training seems to be successful (to some degrees)
 There is an accuracy-robustness tradeoff.

 Adversarial examples may be more than one type
 Typical adversarial examples are off-manifold type
 On-manifold adversarial examples are generalization problem
 Robustness to one type ≠ robustness to the other type

 Dual adversarial training improve robustness to both types

39



Part 3/4

1. How robust is a naïve ML model?
2. Can a ML model resist test-time attack?
3. When is a ML model provably robust?
4. Can you trust others’ data and models?
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Margin and empirical robustness

 Defense methods discussed so far improve in empirical robustness 
compared to naïve models

 Def: margin 𝑟𝑟(𝑥𝑥):= distance from 𝑥𝑥 to nearest decision bndry
𝑟𝑟 𝑥𝑥 : = min

𝑥𝑥′
𝑥𝑥 − 𝑥𝑥′ 𝑠𝑠. 𝑡𝑡. 𝑓𝑓 𝑥𝑥′ ≠ 𝑓𝑓 𝑥𝑥

 If 𝑟𝑟 is the true margin at 𝑥𝑥
 𝑔𝑔(𝑥𝑥) is robust for any perturbation 𝛿𝛿 ≤ 𝑟𝑟
 Prediction cannot with 𝛿𝛿 weaker than 𝑟𝑟

 Numerically compute 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛 (by e.g., C&W)
 Is this sufficient? What guarantees do we have?
 𝑟𝑟 ≤ 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛

 We want certified radius
 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑟𝑟 !!!

41
Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).
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Certification methods

42

https://adversarial-ml-tutorial.org/
Wong, Eric, and Zico Kolter. "Provable defenses against adversarial examples via the convex outer adversarial polytope." (2018).

Minimizing the computed bound on the loss leads to a guaranteed bound 
on worst-case loss (or error) for any norm-bounded adversarial attack

https://adversarial-ml-tutorial.org/


Certification methods

43

https://adversarial-ml-tutorial.org/
Wong, Eric, and Zico Kolter. "Provable defenses against adversarial examples via the convex outer adversarial polytope." (2018).

 Simple 2D toy problem
 2-100-100-100-2 MLP network 
 Trained with Adam (learning 

rate = 0.001, no 
hyperparameter tuning)

 Performance of the model 
against real attacks on MNIST 
with 𝜖𝜖 = 0.1 (ℓ∞)

https://adversarial-ml-tutorial.org/


Certification is not easy

 Shortcomings
 Even optimal convex relaxation for ReLU networks cannot obtain 

tight bounds in all cases
 SDP-based bound for optimization are computationally expensive 

and can’t scale to large networks
 Interval bound propagation-based method often leads to loose

certification bounds
 Ideally, we want a certification methods

 Tight bounds 
 Scalable to large models
 Independent of model architecture
 High confidence

44

Salman, Hadi, et al. "A convex relaxation barrier to tight robustness verification of neural networks." (2019).
Raghunathan, Aditi, et al. "Semidefinite relaxations for certifying robustness to adversarial examples." (2018).
Gowal, Sven, et al. "On the effectiveness of interval bound propagation for training verifiably robust models." (2018).



 Suppose 𝑓𝑓:𝑋𝑋 → {1, 2, … ,𝐶𝐶} is a classifier
𝑥𝑥 = , 𝑓𝑓 𝑥𝑥 = panda

 Now add noise: 𝑥𝑥′ = 𝑥𝑥 + 𝜖𝜖, 𝜖𝜖 ~ 𝑁𝑁 0,𝜎𝜎2𝐼𝐼
𝑥𝑥′ = , 𝑥𝑥′ = , 𝑥𝑥′ =

𝑓𝑓 𝑥𝑥′ = panda, 𝑓𝑓 𝑥𝑥′ = gibbon, 𝑓𝑓 𝑥𝑥′ = cat
 What’s the histogram of 𝑓𝑓(𝑥𝑥′) if repeated for a large number ?

 histogram → 𝑃𝑃 𝑓𝑓 𝑥𝑥 + 𝜖𝜖 = 𝑐𝑐 with prob 1

Smoothed classifier

45

Salman, Hadi, et al. "Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers." (2020).
Li B et al. “Certified adversarial robustness with additive noise.” (2018).
Lecuyer, Mathias, et al. "Certified robustness to adversarial examples with differential privacy." (2019).
Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).

decision bndry of 𝑓𝑓



 𝑔𝑔 𝑥𝑥 : = arg max
𝑐𝑐

𝑃𝑃 𝑓𝑓 𝑥𝑥 + 𝜖𝜖 = 𝑐𝑐

“random” or “smoothed” version of 𝑓𝑓 𝑥𝑥 .

 Why do we care?

Smoothed classifier

46

Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).

𝑓𝑓(𝑥𝑥)

𝒙𝒙

𝑔𝑔(𝑥𝑥)



Randomized Smoothing

 Consider margin of the “smoothed” classifier 𝑔𝑔 𝑥𝑥
 Recall margin is distance from 𝑥𝑥 to the nearest decision bndry
 Numerical margin:   𝑟𝑟 ≤ 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛

 Claim: 𝑅𝑅 𝑥𝑥 ≤ 𝑟𝑟
True margin of smoothed classifier 𝑔𝑔(𝑥𝑥) is lower-bounded by some 

computable value 𝑅𝑅 𝑥𝑥 called Certified Radius
That is, 𝑔𝑔(𝑥𝑥) is provably robust by at least 𝑟𝑟
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Certified Radius
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Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).

Φ−1



Proof

Let 𝑓𝑓:ℝ𝑛𝑛 → [0,1] and define 𝑔𝑔 as follows: 

𝑓𝑓 𝑥𝑥 = 𝑓𝑓 ∗ 𝒩𝒩 0, 𝐼𝐼 𝑥𝑥 =
1

2𝜋𝜋
𝑛𝑛
2
�
ℝ𝑛𝑛
𝑓𝑓 𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒 −

1
2

||𝑥𝑥 − 𝑡𝑡||2 𝑑𝑑𝑡𝑡.

The smoothed function 𝑓𝑓 is known as the Weierstrass transform, and it has a 
property that it induces smoothness. 

 Lemma 1: 𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑖𝑖𝑖𝑖 2
𝜋𝜋

- 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿.

 Lemma 2: (𝑓𝑓 satisfies an even stronger non-linear smoothness property)

𝐿𝐿𝐿𝐿𝐿𝐿 Φ 𝑎𝑎 =
1
2𝜋𝜋

�
−∞

𝑎𝑎
exp −

1
2 𝑠𝑠2 𝑑𝑑𝑠𝑠 .

𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓:ℝ𝑛𝑛 → 0,1 , 𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥 ↦ Φ−1 𝑓𝑓 𝑥𝑥 𝑖𝑖𝑖𝑖 1 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿.
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Lemma 2 allows to obtain a certified robustness guarantee for any classifier.

Let 𝑓𝑓𝑖𝑖: ℝ𝑛𝑛 → 0,1 be the output of the smoothed classifier mapping a point 
𝑥𝑥 ∈ ℝ𝑛𝑛 to the probability that it belongs to a class 𝑐𝑐𝑖𝑖 . Assuming the smooth classifier 
assign 𝑥𝑥 to the class 𝑐𝑐𝐴𝐴 with probability 𝑝𝑝𝐴𝐴 = 𝑓𝑓𝐴𝐴(𝑥𝑥) and denoting the 𝑐𝑐𝐵𝐵 be the other class 
such that 𝑝𝑝𝐵𝐵 = 𝑓𝑓𝐵𝐵 𝑥𝑥 ≤ 𝑝𝑝𝐴𝐴.

The by Lemma 2, under any perturbation 𝛿𝛿 ∈ ℝ𝑛𝑛 of 𝑥𝑥.
Φ−1 𝑓𝑓𝐴𝐴 𝑥𝑥 − Φ−1 𝑓𝑓𝐴𝐴 𝑥𝑥 + 𝛿𝛿 ≤ ||𝛿𝛿||2.

For adversarial 𝛿𝛿, 𝑓𝑓𝐴𝐴 𝑥𝑥 + 𝛿𝛿 ≤ 𝑓𝑓𝐵𝐵 𝑥𝑥 + 𝛿𝛿 leading to 
Φ−1 𝑓𝑓𝐴𝐴 𝑥𝑥 − Φ−1 𝑓𝑓𝐵𝐵 𝑥𝑥 + 𝛿𝛿 ≤ ||𝛿𝛿||2.

Using Lemma 2 on 𝑓𝑓𝐵𝐵 and that 𝑓𝑓𝐵𝐵 𝑥𝑥 ≤ 𝑓𝑓𝐵𝐵 𝑥𝑥 + 𝛿𝛿 we have 
Φ−1 𝑓𝑓𝐵𝐵 𝑥𝑥 + 𝛿𝛿 − Φ−1 𝑓𝑓𝐵𝐵 𝑥𝑥 ≤ ||𝛿𝛿||2.

Combining the previous two equations we have 
1
2

[Φ−1 𝑝𝑝𝐴𝐴(𝑥𝑥) −Φ−1 𝑝𝑝𝐵𝐵 𝑥𝑥 ] ≤ ||𝛿𝛿||2.
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 Using 𝑓𝑓 𝑥𝑥 = 𝑓𝑓 ∗ 𝒩𝒩 0, 𝐼𝐼 𝑥𝑥 and Φ 𝑎𝑎 = 1
2𝜋𝜋 ∫−∞

𝑎𝑎 exp −1
2
𝑠𝑠2

𝜎𝜎2
𝑑𝑑𝑠𝑠 we have

𝜎𝜎
2

[Φ−1 𝑝𝑝𝐴𝐴(𝑥𝑥) −Φ−1 𝑝𝑝𝐵𝐵 𝑥𝑥 ] ≤ ||𝛿𝛿||2

as the lower bound on the minimum ℓ2 adversarial perturbation needed to 
change the classification of the point 𝑥𝑥 from class 𝑐𝑐𝐴𝐴 to 𝑐𝑐𝐵𝐵. 

 If 𝑐𝑐𝐵𝐵 is the runner up class returned by the smoothed classifier for the point 
𝑥𝑥, this lower bound is minimized.

 Both lemmas  provide the same robustness guarantee for small gaps (𝑝𝑝𝐴𝐴 −
𝑝𝑝𝐵𝐵), but lemma 2 is much better for large gaps (when the gap becomes 1, 

lemma 2 gives an infinite radius while the lemma 1 gives a radius 𝜋𝜋
4
.
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Quality of certification 

52

Cohen, Jeremy, et al. "Certified adversarial robustness via randomized smoothing." (2019).



Caveats of Randomized Smoothing

 The smoothed classifier cannot be computed exactly (intractable)
 Monte Carlo estimates are used to compute

a lower bound on 𝑃𝑃𝐴𝐴
 A large # of samples required for high confidence
 Needs to be repeated for each point 𝑥𝑥
 Computationally demanding

 Smoothed classifier 𝑔𝑔 are often less accurate than 𝑓𝑓
 The larger the certified radius, the smaller the certified accuracy is

 Certified radius is often quite smaller than empirical margin in 
practice
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Improving robustness – adversarial training

 SmoothAdv: Adversarially train smoothed classifier 𝑔𝑔
 Def:

 Soft classifier 𝐹𝐹:ℝ𝑛𝑛 → ℙ 𝒴𝒴 (probability of each class)
 Smoothed soft classifier 𝐺𝐺 𝑥𝑥 = 𝔼𝔼𝜂𝜂∼𝒩𝒩 0,𝜎𝜎2𝐼𝐼 𝐹𝐹(𝑥𝑥 + 𝜂𝜂)

 Adversarial example of 𝐺𝐺(𝑥𝑥)
 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎 = arg max

||𝑥𝑥′−𝑥𝑥||2≤𝜖𝜖
𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐶𝐶𝐶𝐶(𝐺𝐺 𝑥𝑥′ ,𝑦𝑦)

 Approximate the loss gradient by Monte Carlo sampling i.e.
∇𝑥𝑥′ −log 𝔼𝔼𝜂𝜂∼𝒩𝒩 0,𝜎𝜎2𝐼𝐼 𝐹𝐹 𝑥𝑥 + 𝜂𝜂 = ∇𝑥𝑥′ −log 1

𝑚𝑚
Σ𝑖𝑖=1𝑚𝑚 𝐹𝐹 𝑥𝑥 + 𝜂𝜂𝑖𝑖 . 

 Use PGD attack 
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Results - SmoothAdv
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Improving radius - direct maximization

 SmoothAdv is slow
 MACER: directly maximize certified radius by minimizing

classification loss  +  robustness loss 
1 𝑔𝑔 𝑥𝑥 ≠𝑦𝑦 + 1 𝑔𝑔 𝑥𝑥 =𝑦𝑦, 𝑅𝑅 𝑔𝑔,𝑥𝑥,𝑦𝑦 ≤𝛽𝛽

(certirifed radius 𝑅𝑅 𝑔𝑔, 𝑥𝑥,𝑦𝑦 = 𝜎𝜎
2

[Φ−1 𝑝𝑝𝐴𝐴(𝑥𝑥) −Φ−1 𝑝𝑝𝐵𝐵 𝑥𝑥 ])
 Similar to SmoothAdv, use soft classifiers and Monte Carlo:

∇𝑥𝑥′ −log 𝔼𝔼𝜂𝜂∼𝒩𝒩 0,𝜎𝜎2𝐼𝐼 𝐹𝐹 𝑥𝑥 + 𝜂𝜂 = ∇𝑥𝑥′ −log 1
𝑚𝑚
Σ𝑖𝑖=1𝑚𝑚 𝐹𝐹 𝑥𝑥 + 𝜂𝜂𝑖𝑖 . 

 Φ−1 has exploding gradients near 0 and 1
 Use hinge loss for numerical stability.
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Results - MACER
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Denoised Smoothing

 Smoothed classifier often performs poorly
 Requires retraining of classifiers (Gauss Aug, SmoothAdv, MACER)

 Denoised smoothing: improve classifier accuracy without retraining 
 Idea: Insert a denoising front-end to pretrained classifiers
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Pros and Cons of Randomized  Smoothing

 Pros
 Relatively scalable to large models and datasets
 Independent of model architecture
 Numerical approximate by Monte Carlo is straightforward

 Cons 
 Accurate estimate requires more computation
 Certifiable radius is rather small
 Curse of dimensionality: largest ℓ𝑝𝑝 radius that can be certified 

decreases as  𝑂𝑂 1/𝑑𝑑1/2 −1/𝑝𝑝 ≅ 𝑂𝑂 1/𝑑𝑑1/2 for 𝑝𝑝 > 2
 Many open problems
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Summary of Part 3

 Various certification methods have been proposed  a provably 
robust alternative to empirical methods of increasing 
robustness

 Approaches based on convex relaxation, SDP are 
computationally expensive to be scalable to large networks 
and models

 Randomized smoothing is the current state-of-the-art method 
for certification but has limitations when trying to certify in 
norms other that ℓ2
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Part 4/4

1. How robust is naïve ML model?
2. Can a ML model resist test-time attack?
3. When is a ML model provably robust?
4. Can you trust others’ data and models?

61



Training-time adversarial attack

 Test-time attack

 Attacker have influence only in test time
 We assumed the model is trustworthy albeit vulnerable 
 But what if it isn’t? 

62
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Training-time adversarial attack

 Training-time attack

 Attacker can “poison” 
 Data
 Model
 Training procedure
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Data poisoning

 Goal of data poisoning
 Modify training data so that learned model using poisoned data perform 

in accordance with the attacker’s intent
 Example: lower the performance

64



Poisoning SVM, LR, OLS
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Poisoning DNN
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Poisoning DNN
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Data poisoning
 Assume

 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁} : original training examples
 𝑢𝑢 = {𝑢𝑢1, … ,𝑢𝑢𝑀𝑀} : poisoned examples
 𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣 : clean validation data

 Data poisoning as a bilevel problem:

max
𝑢𝑢

𝐿𝐿 𝑓𝑓𝜃𝜃 𝑋𝑋𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠. 𝑡𝑡. 𝜃𝜃∗ = arg min
𝜃𝜃
𝐿𝐿(𝑓𝑓𝜃𝜃 𝑋𝑋 ∪ 𝑢𝑢 )

 It’s a hard non-convex problem. Alternating optimization isn’t a 
principled approach
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Poisoning can even lower certified radius
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Backdoor attacks

 Simultaneous training/test-time attack 

 Training: adversary adds a “trigger” to a small portion of data with a 
target label 𝑦𝑦′

 Victim trains the model using poisoned data
 Test 1: input 𝑥𝑥 without trigger → classified correctly
 Test 2: input 𝑥𝑥 with trigger → misclassified as 𝑦𝑦𝑦 (regardless of its true 

label of 𝑥𝑥)
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Defense against data poisoning
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Koh, Pang Wei, Jacob Steinhardt, and Percy Liang. "Stronger data poisoning attacks break data sanitization defenses." (2018).
Borgnia, Eitan, et al. "Strong Data Augmentation Sanitizes Poisoning and Backdoor Attacks Without an Accuracy Tradeoff." (2020).

 Data Sanitization

 Data Augmentation



Defense against data poisoning
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 Weight regularization

 K-NN defense



Defending against backdoor attacks

 Models with backdoors are different from models without
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Wang, Bolun, et al. "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks." (2019).
Tran, Brandon et al. "Spectral signatures in backdoor attacks." (2018).



Clean label backdoor attacks

 Naïvely poisoned data have wrongly-labeled examples

 Clean-labeled poison data have correct labels
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Incorrectly labeled
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Turner, Alexander, Dimitris Tsipras, and Aleksander Madry. "Clean-label backdoor attacks." (2018).
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 Detection methods assume a fixed trigger pattern

Avoiding detection
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 Use a randomly-generated trigger for each image

Avoiding detection
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 Use input-dependent trigger (unique for each image)

Avoiding detection
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 Use invisible trigger using steganography

Avoiding detection
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Summary of Part 4

 It’s dangerous to use data or models from unreliable sources 
 Attacker can exploit these vulnerabilities to either

 Lower the model’s performance
 Take control of the model at test time (called backdoor attack)

 Backdoored models
 Show high-performance on clean dataset
 Only affected when attacker uses a trigger at test time

 Many defense and attack methods proposed
 Many open problems remain
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Conclusion

81

 Machine learning has seen tremendous success in several areas, however 
the key assumption about training/test distributions may not hold in practice, 
exposing significant vulnerabilities

 Adversarial examples demonstrate the failure of state-of-the-art models 
when the assumptions are broken

 Several heuristic ways were proposed to make models robust to adversarial 
examples but were later broken by stronger adversaries

 Certified robustness is emerging as the gold standard to measure the 
performance of models at test time but they are computationally demanding 
and practically very small

 The data hungry nature of machine learning and the difficulty of obtaining 
well curated labeled data makes machine learning vulnerable to poisoning

 Outlier detection can help find poisoned data; model cleansing can help find 
pointed model. The cat-and-mouse game is still ongoing
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