Plane Sweep Algorithms and Segment Intersection

Carola Wenk
Closest Pair

- **Problem:** Given $P \subseteq \mathbb{R}^2$, $|P| = n$, find the distance between the closest pair in P
Plane Sweep: An Algorithm Design Technique

- Simulate sweeping a vertical line from left to right across the plane.
- Maintain **cleanliness property**: At any point in time, to the left of sweep line everything is clean, i.e., properly processed.
- **Sweep line status**: Store information along sweep line
- **Events**: Discrete points in time when sweep line status needs to be updated
Plane Sweep: An Algorithm Design Technique

- Simulate sweeping a vertical line from left to right across the plane.
- Maintain **cleanliness property**: At any point in time, to the left of sweep line everything is clean, i.e., properly processed.
- **Sweep line status**: Store information along sweep line
- **Events**: Discrete points in time when sweep line status needs to be updated

Algorithm Generic_Plane_Sweep:

Initialize **sweep line status** S at time $x=-\infty$

Store initial events in **event queue** Q, a priority queue ordered by x-coordinate

while $Q \neq \emptyset$

 // extract next event e:
 $e = Q$.extractMin();

 // handle event:
 Update sweep line status
 Discover new upcoming events and insert them into Q
Plane sweep for Closest Pair

- **Problem:** Given $P \subseteq \mathbb{R}^2$, $|P| = n$, find the distance of the closest pair in P

- **Sweep line status:**
 - Store current distance Δ of closest pair of points to the left of sweep line
 - Store points in Δ-strip left of sweep line
 - Store pointer to leftmost point in strip

- **Events:** All points in P. No new events will be added during the sweep.
 \rightarrow Presort P by x-coordinate.

Algorithm: Generic Plane Sweep:

Initialize sweep line status S at time $x = -\infty$

Store initial events in event queue Q, a priority queue ordered by x-coordinate while $Q \neq \emptyset$

// extract next event e
$e = Q$.extractMin();

// handle event:
Update sweep line status
Discover new upcoming events and insert them into Q
Plane sweep for Closest Pair, II

\[O(n \log n) \]
- Presort \(P \) by \(x \)-coordinate
- How to store points in \(\Delta \)-strip?
 - Store points in \(\Delta \)-strip left of sweep line in a balanced binary search tree, ordered by \(y \)-coordinate
 - Add point, delete point, and search in \(O(\log n) \) time
- **Event handling:**
 - New event: Sweep line advances to point \(p \in P \)
 - Update sweep line status:
 - Delete points outside \(\Delta \)-strip from search tree by using previous leftmost point in strip and \(x \)-order on \(P \)
 - Compute candidate points that may have distance \(\leq \Delta \) from \(p \):
 - Perform a search in the search tree to find points in \(\Delta \)-strip whose \(y \)-coordinates are at most \(\Delta \) away from \(p \).
 - Because of the cleanliness property each pair of these points has distance \(\leq \Delta \).
 - A \(\Delta \times 2\Delta \) box can contain at most 6 such points.
 - Check distance of these points to \(p \), and possibly update \(\Delta \)
- No new events necessary to discover

Total runtime: \(O(n \log n) \)
Balanced Binary Search Tree
-- a bit different

\[\text{key}[x] \text{ is the maximum key of any leaf in the left subtree of } x. \]
Balanced Binary Search Tree
-- a bit different

key[x] is the maximum key of any leaf in the left subtree of x.
Balanced Binary Search Tree
-- a bit different

\textbf{Range-Query}([7, 41])
Plane Sweep: An Algorithm Design Technique

• Plane sweep algorithms (also called sweep line algorithms) are a special kind of incremental algorithms

• Their correctness follows inductively by maintaining the cleanliness property

• Common runtimes in the plane are $O(n \log n)$:
 – n events are processed
 – Update of sweep line status takes $O(\log n)$
 – Update of event queue: $O(\log n)$ per event
Geometric Intersections

• Important and basic problem in Computational Geometry
• Solid modeling: Build shapes by applying set operations (intersection, union).
• Robotics: Collision detection and avoidance
• Geographic information systems: Overlay two subdivisions (e.g., road network and river network)
• Computer graphics: Ray shooting to render scenes
Line Segment Intersection

• Input: A set $S = \{s_1, \ldots, s_n\}$ of (closed) line segments in \mathbb{R}^2

• Output: All intersection points between segments in S
Line Segment Intersection

- n line segments can intersect as few as 0 and as many as $\binom{n}{2} = O(n^2)$ times
- Simple algorithm: Try out all pairs of line segments → Takes $O(n^2)$ time → Is optimal in worst case
- Challenge: Develop an output-sensitive algorithm
 - Runtime depends on size k of the output
 - Here: $0 \leq k \leq c n^2$, where c is a constant
 - Our algorithm will have runtime: $O((n+k) \log n)$
 - Best possible runtime: $O(n \log n + k)$ → $O(n^2)$ in worst case, but better in general
Complexity

• Why is runtime $O(n \log n + k)$ optimal?
• The element uniqueness problem requires $\Omega(n \log n)$ time in algebraic decision tree model of computation (Ben-Or ’83)
• Element uniqueness: Given n real numbers, are all of them distinct?
• Solve element uniqueness using line segment intersection:
 – Take n numbers, convert into vertical line segments. There is an intersection iff there are duplicate numbers.
 – If we could solve line segment intersection in $o(n \log n)$ time, i.e., strictly faster than $\Theta(n \log n)$, then element uniqueness could be solved faster. Contradiction.
Intersection of two line segments

- Two line segments ab and cd
- Write in terms of convex combinations:
 \[
 p(s) = (1-s) a + s b \quad \text{for } 0 \leq s \leq 1 \\
 q(t) = (1-t) c + t d \quad \text{for } 0 \leq t \leq 1 \\
 \]
 Intersection if $p(s)=q(t)$

 \Rightarrow \text{Equation system}

 \[
 (1-s) a_x + s b_x = (1-t) c_x + t d_x \\
 (1-s) a_y + s b_y = (1-t) c_y + t d_y
 \]

- Solve for s and t. In division, if divisor $= 0$ then line segments are parallel (or collinear). Otherwise get rational numbers for s and t. Either use floating point arithmetic or exact arithmetic.
Plane sweep algorithm

- **Cleanliness property:**
 - All intersections to the left of sweep line l have been reported

- **Sweep line status:**
 - Store segments that intersect the sweep line l, ordered along the intersection with l.

- **Events:**
 - Points in time when sweep line status changes combinatorially (i.e., the order of segments intersecting l changes)
 - Endpoints of segments (insert in beginning)
 - Intersection points (compute on the fly during plane sweep)

Algorithm Generic_Plane_Sweep:

Initialize sweep line status S at time $x = -\infty$
Store initial events in event queue Q, a priority queue ordered by x-coordinate
while $Q \neq \emptyset$
 // extract next event e:
 $e = Q$ extractMin();
 // handle event:
 Update sweep line status
 Discover new upcoming events and insert them into Q
General position

Assume that “nasty” special cases don’t happen:

- No line segment is vertical
- Two segments intersect in at most one point
- No three segments intersect in a common point
Event Queue

- Need to keep events sorted:
 - Lexicographic order (first by x-coordinate, and if two events have same x-coordinate then by y-coordinate)
- Need to be able to remove next point, and insert new points in $O(\log n)$ time
- Need to make sure not to process same event twice
 \Rightarrow Use a priority queue (heap), and possibly extract multiples
 \Rightarrow Or, use balanced binary search tree
Sweep Line Status

- Store segments that intersect the sweep line l, ordered along the intersection with l.
- Need to insert, delete, and find adjacent neighbor in $O(\log n)$ time.
- Use **balanced binary search** tree, storing the order in which segments intersect l in leaves.
Event Handling

1. Left segment endpoint
 - Add segment to sweep line status
 - Test adjacent segments on sweep line \(l \) for intersection with new segment (see Lemma)
 - Add new intersection points to event queue
Event Handling

2. Intersection point
 – Report new intersection point
 – Two segments **change order** along l
 → Test new adjacent segments for new intersection points (to insert into event queue)

Note: “new” intersection might have been already detected earlier.
Event Handling

3. Right segment endpoint
 - Delete segment from sweep line status
 - **Two segments become adjacent.** Check for intersection points (to insert in event queue)
Intersection Lemma

- **Lemma**: Let s, s' be two non-vertical segments whose interiors intersect in a single point p. Assume there is no third segment passing through p. Then there is an event point to the left of p where s and s' become adjacent (and hence are tested for intersection).

- **Proof**: Consider placement of sweep line infinitesimally left of p. s and s' are adjacent along sweep line. Hence there must have been a previous event point where s and s' become adjacent.
Runtime

- Sweep line status updates: $O(\log n)$
- Event queue operations: $O(\log n)$, as the total number of stored events is $\leq 2n + k$, and each operation takes time

$$O(\log(2n+k)) = O(\log n^2) = O(\log n)$$

$k = O(n^2)$

- There are $O(n+k)$ events. Hence the total runtime is $O((n+k) \log n)$