Convex Hulls

Carola Wenk
Convex Hull Problem

- Given a set of pins on a pinboard and a rubber band around them. How does the rubber band look when it snaps tight?
- The convex hull of a point set is one of the simplest shape approximations for a set of points.
Convexity

- A set $C \subseteq \mathbb{R}^2$ is **convex** if for all two points $p, q \in C$ the line segment \overline{pq} is fully contained in C.

convex | non-convex
Convex Hull

- The convex hull \(CH(P) \) of a point set \(P \subseteq \mathbb{R}^2 \) is the smallest convex set \(C \supseteq P \). In other words \(CH(P) = \bigcap_{C \supseteq P, \text{convex}} C \).
Convex Hull

• Observation: \(\text{CH}(P) \) is the unique convex polygon whose vertices are points of \(P \) and which contains all points of \(P \).

• We represent the convex hull as the sequence of points on the convex hull polygon (the boundary of the convex hull), in counter-clockwise order.
A First Try

Algorithm SLOW_CH(P):

/* CH(P) = Intersection of all half-planes that are defined by the directed line through ordered pairs of points in P and that have all remaining points of P on their left */

Input: Point set $P \subseteq \mathbb{R}^2$

Output: A list L of vertices describing the CH(P) in counter-clockwise order

$E := \emptyset$

for all $(p, q) \in P \times P$ with $p \neq q$ // ordered pair

valid := true

for all $r \in P$, $r \neq p$ and $r \neq q$

if r lies to the right of directed line through p and q // takes constant time

valid := false

if valid then

$E := E \cup \overline{pq}$ // directed edge

Construct from E sorted list L of vertices of CH(P) in counter-clockwise order

- Runtime: $O(n^3)$, where $n = |P|$
- How to test that a point lies to the left?
Orientation Test / Halfplane Test

- **positive orientation** (counter-clockwise)
 - r lies to the left of pq

- **negative orientation** (clockwise)
 - r lies to the right of pq

- **zero orientation**
 - r lies on the line \overrightarrow{pq}

- $\text{Orient}(p,q,r) = \text{sign det} \begin{bmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{bmatrix}$, where $p = (p_x, p_y)$

- Can be computed in constant time
Convex Hull: Divide & Conquer

- Preprocessing: sort the points by x-coordinate
- Divide the set of points into two sets A and B:
 - A contains the left $\lfloor n/2 \rfloor$ points,
 - B contains the right $\lceil n/2 \rceil$ points
- Recursively compute the convex hull of A
- Recursively compute the convex hull of B
- Merge the two convex hulls
Merging

- Find upper and lower tangent
- With those tangents the convex hull of \(A \cup B \) can be computed from the convex hulls of \(A \) and the convex hull of \(B \) in \(O(n) \) linear time
Finding the lower tangent

\[a = \text{rightmost point of A} \]
\[b = \text{leftmost point of B} \]

while \(T=ab \) not lower tangent to both convex hulls of A and B do{

while T not lower tangent to convex hull of A do{

\[a = a-1 \]

}\}

while T not lower tangent to convex hull of B do{

\[b = b+1 \]

}\}

check with orientation test
Convex Hull: Runtime

• Preprocessing: sort the points by x-coordinate \(\mathcal{O}(n \log n) \) just once

• Divide the set of points into two sets \(A \) and \(B \):
 • \(A \) contains the left \(\lfloor n/2 \rfloor \) points,
 • \(B \) contains the right \(\lceil n/2 \rceil \) points

• Recursively compute the convex hull of \(A \) \(\mathcal{T}(n/2) \)

• Recursively compute the convex hull of \(B \) \(\mathcal{T}(n/2) \)

• Merge the two convex hulls \(\mathcal{O}(n) \)
Convex Hull: Runtime

- Runtime Recurrence:
 \[T(n) = 2 \ T(n/2) + cn \]

- Solves to \(T(n) = \Theta(n \log n) \)
Recurrence
(Just like merge sort recurrence)

1. **Divide**: Divide set of points in half.

2. **Conquer**: Recursively compute convex hulls of 2 halves.

3. **Combine**: Linear-time merge.

\[
T(n) = 2T\left(\frac{n}{2}\right) + O(n)
\]
Recurrence (cont’d)

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1; \\
2T(n/2) + \Theta(n) & \text{if } n > 1.
\end{cases} \]

- How do we solve \(T(n) \)? I.e., how do we find out if it is \(O(n) \) or \(O(n^2) \) or …?
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.

$h = \log n$

$\Theta(1)$
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.

$h = \log n$

$\Theta(1)$
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.

$h = \log n$

$\Theta(1)$
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.

$h = \log n$

$\Theta(1)$ -----> #leaves = n -----> $\Theta(n)$
Recursion tree

Solve $T(n) = 2T(n/2) + dn$, where $d > 0$ is constant.

$h = \log n$

$\Theta(1)$

#leaves = n

Total $\Theta(n \log n)$
The divide-and-conquer design paradigm

1. **Divide** the problem (instance) into subproblems.
 - *a* subproblems, **each** of size n/b

2. **Conquer** the subproblems by solving them recursively.

3. **Combine** subproblem solutions.

 Runtime is $f(n)$
Master theorem

\[T(n) = a T(n/b) + f(n) \]

where \(a \geq 1 \), \(b > 1 \), and \(f \) is asymptotically positive.

Case 1: \(f(n) = O(n^{\log_b a - \varepsilon}) \)

\[\Rightarrow T(n) = \Theta(n^{\log_b a}) . \]

Case 2: \(f(n) = \Theta(n^{\log_b a \log^k n}) \)

\[\Rightarrow T(n) = \Theta(n^{\log_b a \log^{k+1} n}) . \]

Case 3: \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \) and \(af(n/b) \leq cf(n) \)

\[\Rightarrow T(n) = \Theta(f(n)) . \]

Convex hull: \(a = 2, \ b = 2 \Rightarrow n^{\log_b a} = n \)

\[\Rightarrow \text{CASE 2 } (k = 0) \Rightarrow T(n) = \Theta(n \log n) . \]