
Multi-Pass Geometric Algorithms

Timothy M. Chan
∗

School of Computer Science
University of Waterloo

Waterloo, Ontario N2L 3G1, Canada

tmchan@uwaterloo.ca

Eric Y. Chen
School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

y28chen@uwaterloo.ca

ABSTRACT
We initiate the study of exact geometric algorithms that
require limited storage and make only a small number of
passes over the input. Fundamental problems such as low-
dimensional linear programming and convex hulls are con-
sidered.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
Streaming algorithms, convex hulls, linear programming

1. INTRODUCTION

The multi-pass model. Streaming algorithms that make
a single pass over the input and work with a small amount
of space have grown in popularity [25], because of the abil-
ity of such algorithms to handle massive data sets. Since
only one pass over the input is required, data elements may
arrive one at a time and the entire data set never needs
to be physically stored. Study of geometric algorithms in
the data-stream model has already begun to take place in
several recent papers (e.g., [2, 7, 31]).

Algorithms that are allowed to make multiple (but a small
number of) passes over the input with limited working space
have also been touched upon in some of the previous papers
both in geometry (e.g., [1, 31]) and in other areas (e.g., [3,

∗Research of this author has been supported by an NSERC
Research Grant and a Premier’s Research Excellence Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’05, June 6–8, 2005, Pisa, Italy.
Copyright 2005 ACM 1-58113-991-8/05/0006 ...$5.00.

12, 14, 15, 17]). Here, we are concerned with applications
where the data set is explicitly stored somewhere (for exam-
ple, in tapes or disks). In light of recent interest in algorith-
mics for large data sets, the restriction that input elements
are read sequentially in few passes is attractive because of
the lower I/O overhead. In this paper, we investigate such
multi-pass algorithms in computational geometry. What we
discover is that although in the one-pass model one cannot
usually obtain exact algorithms and must turn towards ap-
proximation algorithms, in the multi-pass model there are
interesting (and important) geometric problems that can be
solved exactly.

The history of multi-pass algorithms can be traced back
to much earlier times (in compiler design and automata the-
ory). Munro and Paterson’s seminal paper [24] in 1980 de-
fined the multi-pass model and studied the classical sort-
ing and selection problems. In particular, they gave a
selection algorithm that requires only �1/δ� passes and
O(nδ log2−2δ n) space for an arbitrary fixed constant δ > 0;
they also provided an almost matching lower bound. The
present paper can be seen as a (belated) continuation of
Munro and Paterson’s work for sorting and searching prob-
lems in dimension beyond one.

Our main results. We naturally begin our study with
some fundamental problems in computational geometry. We
obtain a large number of results on multi-pass algorithms,
the highlights of which include:

• an O(n)-time randomized algorithm for linear program-
ming (or any LP-type problem) in fixed dimensions, us-
ing a constant number of passes and O(nδ) space for any
fixed constant δ > 0;

• an O(n)-time algorithm for finding the convex hull of n
sorted points in 2-d, using a constant number of passes
and O(n1/2+δ) space;

• an O(n log n)-time algorithm for finding the convex hull
of n arbitrary points in 2-d, using a constant number of
passes and O(hnδ) space, where h denotes the output
size.

We also provide nearly matching lower bounds to the above.
Along the way, we identify a number of useful techniques for
the multi-pass model (for example, using larger branching
factors, running a multi-pass algorithm on a subset of the in-
put, running several algorithms in series or in parallel, prov-
ing multi-pass lower bounds by adversary and information-
theoretic arguments, etc.)

As an example, consider the point of finding a line that
minimizes the largest vertical distance to a collection of
n data points in the plane. Results in the data-stream
model [7] imply a one-pass algorithm that can approximate
the minimum to within a 1 + ε factor for any fixed constant
ε > 0 with constant space. In contrast, our result on linear
programming implies an O(1)-pass algorithm that can find
the exact minimum with O(nδ) space.

A related read-only model. Our interest in multi-pass
algorithms actually stems from our earlier interest in in-
place (or nearly in-place) algorithms [5], which are space-
efficient algorithms for input that resides in an array. Such
algorithms are allowed to permute entries of the array (and
sometimes overwrite entries). Multi-pass algorithms are
more restrictive: not only do we lack random access to the
input, but the input space can only be read and not writ-
ten. This read-only characteristic is desirable, because the
original input is retained during and after the execution of
the algorithm. (Of course, we can make a copy of the input
first, but that defeats the purpose of space-efficiency.) In-
place algorithms for many geometric problems [5] also tend
to be complicated, lack locality of reference, and are thus
less practical. In contrast, multi-pass algorithms are au-
tomatically I/O-efficient (and even cache-oblivious), if the
amount of working space is sufficiently small.

If read-only random access to the input is allowed and the
number of passes is no longer a concern, some of our results
can be improved. Specifically, we give:

• a read-only O(n)-time randomized algorithm for linear
programming in fixed dimensions, using O(log n) space;

• a read-only O(n)-time randomized algorithm for finding
the convex hull of n sorted points in IR2, using O(nδ)
space for any fixed δ > 0.

As an example, our linear programming result implies that
there is a nearly in-place algorithm for testing whether a
simple polygon is star-shaped (and if so, reporting a point
in the kernel), where the vertices are stored in an array in
order. Previous in-place algorithms for linear programming
cannot be used, because permuting vertices would destroy
the polygon.

Read-only algorithms have been previously considered for
the sorting problem [4, 27] but are apparently less often
studied. One advantage of such algorithms is that the in-
put does not need to reside in one place, as long as we
can answer queries to access any individual element (in a
way, this is similar to models proposed for sublinear algo-
rithms [8], except that we are happy with linear running
times). The read-only restriction can also be combined with
external memory models.

2. 2-D CONVEX HULLS
We warm up with the most basic geometric problem, 2-d

convex hulls. As Munro and Paterson [24] observed, there is
a simple algorithm for sorting n numbers using O(s) space,
O(n/s) passes, and O(n(log n + n/s)) comparisons: the al-
gorithm simply find the next s smallest elements in each
pass. These bounds were shown to be optimal asymptot-
ically. Since 1-d sorting reduces to 2-d convex hulls, we
cannot hope for a better result for 2-d convex hulls. Still,

we show that the same result can be attained in 2-d by a
similarly simple algorithm:

Theorem 2.1. Given n points in IR2 and a parameter s,
we can generate the vertices of the upper hull from left to
right (and print to an output stream), by an O(n/s)-pass
algorithm that uses O(s) space and runs in O(n(log n+n/s))
time.

Proof. The pseudocode is as follows:

0. v = the leftmost point
1. repeat:
2. find a vertical slab σ containing s points

with its left wall through v
3. let 〈q0, . . . , qj〉 be the upper hull of

the points inside σ
4. for each point p to the right of σ:

5. while p is above
←→

qj−1qj , j = j − 1
6. set j = j + 1 and qj = p
7. print out q0, . . . , qj and set v = qj

In each iteration of the main loop (lines 1–7), we start
with a known hull vertex v and compute the portion of the
upper hull from v up to and including the bridge (hull edge)
at the right wall of σ. This is accomplished by imitating
Graham’s scan [28] (lines 4–6), except that points are pro-
cessed not necessarily in sorted order (although points inside
σ are examined in line 3 before points to the right of σ). By
induction, one can check that at the end of the for loop,
qj−1qj is indeed the desired bridge. After at most �n/s�
iterations, the entire upper hull is computed.

Line 2 reduces to finding the s leftmost points among
those points to the right of v and can be carried out in one
pass, since we can easily maintain the s smallest elements
of a stream with O(s) space. The running time is linear if
we repeat the following: read in the next s elements, insert
them to the current buffer (but don’t sort the buffer), select
the median in the buffer in O(s) time, and remove the s
largest elements from the buffer. Line 3 takes O(s log s)
time and O(s) space in main memory. Lines 4–6 require an
additional pass and takes O(n) time. The whole algorithm
thus takes at most 2�n/s� passes, uses O(s) space, and runs
in O((n/s) · (n + s log s)) time.

Even in the relaxed read-only model, no algorithm with
substantially better time-space product is possible, due to
known lower bounds for sorting [4]. The situation is unfortu-
nate, as many geometric problems (e.g., closest pair and di-
ameter) are at least as hard as sorting-like problems (e.g., el-
ement uniqueness) and probably do not admit space-efficient
algorithms with few passes. Still, we will identify some geo-
metric problems not threatened by the sorting lower bound
in the next sections.

3. FIXED-DIMENSIONAL LINEAR
PROGRAMMING

We consider linear programming in fixed dimensions,
where a number of (deterministic and randomized) linear-
time algorithms were known in the traditional model of com-
putation. We show that many of these algorithms can be

modified to work with little space (O(nδ)) using a constant
number of passes, although some are more time-efficient
than others. Some of the modifications are not too difficult,
while some require new ideas. We also prove a nontrivial
lower bound and contrast it with a read-only algorithm. (In
the bounds below, we suppress dependence on d but not δ.)

3.1 Prune-and-search in 2-d
We begin in 2-d with the first published linear-time al-

gorithm by Megiddo [20] and Dyer [13], based on prune-
and-search. There are two difficulties in turning this algo-
rithm into a multi-pass algorithm: First, since the original
algorithm removes a constant fraction of the input at each
iteration and consequently requires at least a logarithmic
number of passes, we need to remove a larger fraction. This
is accomplished by changing some parameters (instead of
pairing, we use grouping of a larger size). Second, since we
cannot explicitly remove any element from the input in the
multi-pass model, we need to encode the current subset of
surviving elements using a small amount of information and
be able to retrieve this subset in a single pass whenever re-
quired. This task is accomplished by describing the current
subset as the outcome of a series of processes (“filters”) and
retrieving the subset using a nontrivial “pipelining” tech-
nique.

Theorem 3.1. Given n halfplanes in IR2, we can compute
the lowest point in their intersection by an O(1/δ)-pass de-
terministic algorithm that uses O((1/δ2)nδ) space and runs
in O((1/δ)n1+δ) time.

Proof. We first define two subroutines: given a stream
of halfplanes H , a parameter r, and a vertical slab
σ, Listr,σ(H) outputs a stream of vertical lines, and
Filterr,σ(H) outputs a subset of halfplanes.

Listr,σ(H): repeat:
1. read in the next r halfplanes h1, . . . , hr

2. compute the intersection I = h1 ∩ · · · ∩ hr

3. print out the vertical lines through
the vertices of I inside σ

Filterr,σ(H): repeat:
1. read in the next r halfplanes h1, . . . , hr

2. compute the intersection I = h1 ∩ · · · ∩ hr

3. print out the halfplanes that participate
in I ∩ σ

For an input stream of size n, both subroutines require
O(r) space and O((n/r) · r log r) = O(n log r) time.

Given a set H of n halfplanes, our algorithm follows the
outline below, where r0, r1, . . . is a sequence to be deter-
mined later:

0. let σ0 be the whole plane
1. for i = 0, 1, . . .:
2. if size of Filterri−1 ,σi (· · · (Filterr0 ,σ1(H)) · · ·))

is below ri then return solution directly
3. divide the slab σi into ri subslabs so that each

subslab contains O(1/ri)-th of the lines from
Listri ,σi(Filterri−1 ,σi(· · · (Filterr0 ,σ1(H)) · · ·))

4. decide which subslab contains the solution, and
let this subslab be σi+1

Let Hi = Filterri−1 ,σi(· · · (Filterr0 ,σ1 (H)) · · ·)), and
let ni = |Hi|. Before iteration i, we assume that the solution
lies in the vertical slab σi and is defined only by halfplanes
in Hi. Halfplanes not in Hi can be considered pruned, al-
though they are not physically removed from the input (and
Hi is not actually stored by the algorithm). After iteration i,
since we know that the solution lies in σi+1, by design of
Filter, only halfplanes in Hi+1 = Filterri ,σi+1 (Hi) can
indeed affect the solution. The invariant is thus preserved.

We now show that ni decreases rapidly. Since
Listri ,σi(Hi) generates at most ni lines, at most O(ni/ri)
of these lines are inside σi+1. Observe that if h1 ∩ · · · ∩ hri

has j vertices inside σi+1, then at most j + 2 halfplanes can
participate in h1 ∩ · · · ∩hri ∩σi+1. Thus, Filterri ,σi+1 (Hi)
generates at most O(ni/ri) + 2�ni/ri� halfplanes. In other
words, ni+1 = O(ni/ri).

We analyze the cost of iteration i of the algorithm. The
key observation is that although Hi cannot be stored, it can
be generated as an output stream from the original input,
by running the i Filter operations in a pipeline. The ex-
ecution of this pipeline requires O(r0 + · · · + ri−1) space
and O(n0 log r0 + · · · + ni−1 log ri−1) time. For line 3, we
can feed this output stream to List and then to an algo-
rithm for finding ri approximate quantiles in a stream of ni

elements—i.e., finding elements of ranks within an additive
error O(ni/ri) from ni/ri, 2ni/ri, 3ni/ri, . . . Munro and
Paterson [24] provided a simple tree-based algorithm for this
task that requires one pass and O(ri log2 ni) space (they did
not explicitly state the approximate quantiles problem in
their paper but this subroutine was used as part of their ex-
act, multi-pass selection algorithm); it can be checked that
the running time is O(ni log(ri log ni)). (See [16] for another
approximate quantiles algorithm.)

For line 4, recall [13, 20] that deciding whether the solu-
tion is to the left or right of a line � reduces to computing
the intersection of the halfplanes at �, which reduces to com-
puting the minimum or maximum of a 1-d set. Thus, we can
decide which of the O(ri) subslabs contains the solution in
one pass, by maintaining O(ri) minima/maxima simultane-
ously, with O(ri) space and O(nri) time.

The simplest choice of parameters would be r0 = r1 =
· · · = r, with O(logr n) iterations. The algorithm thus
makes O(logr n) passes, uses O(r log2 n) space, and runs in
O(nr logr n) time. The theorem follows, for example, by

setting r = nδ/2 (and noting that log n = O((1/δ)nδ/4)).

We can speed up the algorithm to run in almost linear
time: this theorem gives our best deterministic result. (A
faster randomized algorithm will be given later.)

Theorem 3.2. The running time in Theorem 3.1 can be
improved to O((1/δ)n log(c) n), where c is any fixed integer

constant and log(c) denotes logarithm iterated c times.

Proof. The algorithm is the same, but line 3 (approximate
quantiles) and line 4 (the decision step) need to be done
more efficiently, and the choice of parameters is different.

For line 3, we use a variant of Munro and Paterson’s al-
gorithm where the tree has degree b instead of 2. It can be
checked that the space bound is now O(bri log2

b ni) and the

time bound is O(ni log(ri logb ni)). We set b = nδ/2.

For line 4, recall that this step reduces to computing the
intersection of n halfplanes at each of O(ri) vertical lines.
We speed up the naive O(nri)-time method by repeating
the following: read in the next ri halfplanes, compute their
intersection I in O(ri log ri) time, compute the intersection
of I with the O(ri) vertical lines in an additional O(ri log ri)
time, and update the current answers at the O(ri) vertical
lines. The space bound is still O(ri), but the running time
is improved to O((n/ri) · ri log ri) = O(n log ri).

This time bound can be further improved by ap-
plying the decision step only to halfplanes in Hi =
Filterri−1 ,σi (· · · (Filterr0 ,σ1(H)) · · ·)). Thus, line 4 takes
only O(ni log ri) time, in addition to the cost of re-executing
the Filter pipeline in a new pass.

We choose r0 = log(c−1) n, r1 = log(c−2) n, . . . , rc−2 =
log n, and rc−1 = rc = · · · = nδ/2, with at most c−1+�2/δ�
iterations. The algorithm still makes O(1/δ) passes and uses
at most O((1/δ2)nδ) space. Since nj+1 = O(nj/rj) for all
j, the running time of the i-th iteration is now

O(n0 log r0 + · · · + ni log ri) = O(n log(c) n).

We will need the following generalization for later appli-
cations:

Theorem 3.3. Given n halfplanes in IR2 and q directions,
we can compute the q extreme points along the given direc-
tions in the intersection of the halfplanes by an O(1/δ)-pass
deterministic algorithm that uses O((1/δ2)qnδ) space and

runs in O((1/δ)(n log(c) n + n log q)) time.

Proof. We modify the algorithm so that σi is not a single
slab but the union of up to q slabs. In line 3, σi is divided
into up to q+ri subslabs. In line 4, σi+1 is set to be the union
of the subslabs containing the q solutions. In the analysis,
we now have ni+1 = O(qni/ri), so we need to increase all the
ri’s by a factor of q to keep the same number of iterations.

3.2 Prune-and-search in higher
dimensions

Megiddo [21] extended his algorithm to higher dimensions,
but the original algorithm seems difficult to work with in the
multi-pass setting (among other things, it requires pairing
of nonadjacent input elements). Nevertheless, with more
modern tools, namely, cuttings, we can obtain a multi-pass
variant of the prune-and-search algorithm. In fact, this ver-
sion is more straightforward, because the current subset of
surviving elements can be encoded by just a simplex and
can be retrieved easily without any pipelining tricks. One
helpful technique, of running several multi-pass algorithms
“simultaneously”, is illustrated.

Theorem 3.4. Given n halfspaces in IRd, we can com-
pute the lowest point in their intersection by an O(1/δd−1)-

pass Las Vegas algorithm that uses O((1/δO(1))nδ) space and

runs in O((1/δO(1))n1+δ) time w.h.p.—i.e., with probability
at least 1 − 1/nc for any fixed constant c.

Proof. Let H be the set of n bounding hyperplanes. The
outline of the algorithm is simple:

0. let ∆ be the whole space
1. repeat:
2. if |{h ∈ H | h intersects ∆}| ≤ r log n then return

solution directly
3. take a random sample R of expected size r log n

from {h ∈ H | h intersects ∆}
4. compute the canonical triangulation T of the

arrangement of R restricted inside ∆
5. decide which simplex in T contains the solution

and set ∆ to be this simplex

Clearly, the solution is always contained in ∆ and is de-
fined only by hyperplanes that intersect ∆.

Let ∆i be the simplex ∆ at the beginning of the i-th iter-
ation, let Hi = {h ∈ H | h intersects ∆i}, and let ni = |Hi|.
It is well-known [9, 23] that for a random sample R ⊆ Hi of
size r log n, w.h.p. the canonical triangulation of the arrange-
ment of R forms an O(1/r)-cutting of Hi—i.e., a partition of
IRd into simplices such that each simplex intersects at most
O(ni/r) hyperplanes of Hi. Since all hyperplanes intersect-
ing ∆i+1 must intersect ∆i, we have ni+1 = O(ni/r) w.h.p.
The number of iterations is thus O(logr n) w.h.p.

We can compute ni (line 2) easily in one pass. Line 3 can
also be easily done in another pass by Bernoulli sampling
(for each hyperplane, if it intersects ∆i, put it into R with
probability (r log n)/ni). Line 4 takes O((r log n)d) time and
space in main memory. (Actually, the bound can be reduced

to O((r log n)�d/2�), since only one cell of the arrangement
needs to be triangulated.)

For line 5, recall that deciding which side of a given hy-
perplane h contains a solution reduces to solving a linear
program restricted inside h. Thus, line 4 can be done by
solving (r log n)O(1) subproblems in d − 1 dimensions. We

handle these subproblems by making (r log n)O(1) calls to a
(d − 1)-dimensional algorithm not in series but in parallel.
In other words, in every pass, we simulate one pass of all in-
vocations of the algorithms simultaneously; the space usage
is multiplied by (r log n)O(1) but not the number of passes.

Let Pd(n), Sd(n), and Td(n) be the number of
passes, the space requirement, and the running time
of the d-dimensional algorithm. Then Pd(n) =

O((logr n)Pd−1(n)), Sd(n) = O((r log n)O(1)Sd−1(n)),

and Td(n) = O(((r log n)O(1)(logr n)Td−1(n)) imply that

Pd(n) = O(logd−1
r n), Sd(n) = O((r log n)O(1)), and Td(n) =

O(nrO(1) logO(1) n). The theorem follows by setting r =

nΘ(δ).

This algorithm can be derandomized, luckily, because of
a recent result on derandomization for data streams. The
running time is not as good as our earlier 2-d result, however.

Theorem 3.5. The algorithm in Theorem 3.4 can be made
deterministic with the same performance.

Proof. We replace the random sample R (line 3) with a
(1/r)-approximation of Hi in a suitable range space [19].
Bagchi et al. [2] have recently described a tree-based
algorithm for computing an (1/r)-approximation of size

O(r2 log r) that requires one pass, uses O(rO(1) logO(1) n)

space, and runs in O(nrO(1) logO(1) n) time.
The canonical triangulation T (line 4) still forms an

O(1/r)-cutting of Hi, although its size is now O((r2 log r)d).

(Alternatively, we can replace T with an O(1/r)-cutting of
R, which has size O(rd) and can be computed by an internal-

memory algorithm.) Again we can set r = nΘ(δ).

The same approach can be applied to the ham-sandwich
cut problem in the 2-d separable case [22]. (The decision
step here requires a selection algorithm, which was provided
by Munro and Paterson.)

Theorem 3.6. Given two n-point sets A and B that are
separable by a line in IR2, we can find a line � such that
each side of � contains
n/2� points of A and
n/2� points

of B, by an O(1/δ2)-pass algorithm using O((1/δ)O(1)nδ)
space.

3.3 Clarkson’s algorithm
Another linear programming algorithm that can be made

to work in the multi-pass model is Clarkson’s randomized
algorithm [10]. The nonrecursive version of his algorithm,
without any major modification, already yields a result with
few passes and sublinear space.

Theorem 3.7. Given n halfspaces in IRd whose intersec-
tion is nonempty, we can compute the lowest point in the
intersection by a (d + 1)-pass Las Vegas algorithm that uses
O(

√
n log n) space and runs in O(n) time w.h.p.

Proof. Let H be the given set of halfspaces. The nonrecur-
sive version of Clarkson’s algorithm can be paraphrased as
follows:

0. take a random sample R of expected size r log n
1. for i = 0, . . . , d, let vi be the solution for

{h ∈ H | h ∈ R or ∃j < i, vj violates h}
2. return vd

Let Hi = {h ∈ H | h ∈ R or ∃j < i, vj violates h}. It can
be shown [10] that at least i of the halfspaces defining the
optimal solution is in Hi, and thus vd is indeed the optimal
solution.

It is well-known [23] that w.h.p., a random sample R of
size r log n is an O(1/r)-net—a subset R ⊆ H with the
property that any point violating no halfspaces in R violates
at most O(n/r) halfspaces in H . Thus, |Hi| = r log n +
O(n/r) w.h.p.

Line 0 can be easily done in one pass. In each iteration of
line 1, the subset Hi can be found in one pass, and vi can be
computed by an internal-memory linear programming algo-
rithm in O(|Hi|) time and space. Note that iteration 0 does
not require a new pass (since H0 = R). The theorem fol-

lows by setting r =
�

n/ log n. (Note that if the problem
could be infeasible, an additional pass is required to verify
the solution.)

We can combine Clarkson’s algorithm with our previous
prune-and-search method to get a randomized algorithm
with linear running time and little space.

Theorem 3.8. The running time in Theorem 3.4 can be
improved to O((1/δO(1))n) w.h.p.

Proof. We use the same algorithm as in the previous proof,
except that line 1 is now done by feeding Hi into the algo-
rithm in Theorem 3.4. In other words, in every pass, we only
read in a halfspace if it is in R or is violated by vj for some
j < i. (Note that Hi cannot be explicitly stored.) Com-
pared to Theorem 3.4, the number of passes is increased
by a d + 1 factor, and the space requirement is increased
by an O(r log n) term. The expected running time becomes

O((1/δd−1)n + (1/δO(1))(r log n + n/r)1+δ). The theorem
follows by setting r = nδ.

We can also obtain a multi-pass algorithm purely from
Clarkson’s recursive algorithm. Here, the intermediate sub-
sets are a little harder to describe but still do not require
pipelining.

Theorem 3.9. Given n halfspaces in IRd, we can compute
the lowest point in their intersection by a 2O(1/δ)-pass Las
Vegas algorithm that uses O((1/δO(1))nδ) space and runs in

O(2O(1/δ)n) time.

Proof. The recursive version of Clarkson’s algorithm can
be rewritten as follows, where the argument C is a small
collection of pairs of the form (R, V) with a subset R ⊆ H
and a set V of at most d + 1 points. (In the initial call,
C = ∅.)

Clarkson(C):
0. if |{h ∈ H | ∀(R, V) ∈ C, (h ∈ R or ∃v ∈ V , v vio-

lates h)}| ≤ 2r log n then return solution directly
1. take a random sample R′ of expected size r log n from

{h ∈ H | ∀(R, V) ∈ C, (h ∈ R or ∃v ∈ V , v violates h)}
2. for i = 0, . . . , d,

vi = Clarkson(C ∪ {(R′, {v0, . . . , vi−1})})
3. return vd

Let HC = {h ∈ H | ∀(R, V) ∈ C, (h ∈ R or ∃v ∈ V ,
v violates h)}. The same analysis shows that
|HC∪{(R′,{v0 ,...,vi−1})}| ≤ r log n + O(|HC|/r) w.h.p. Thus,
the depth of the recursion is O(logr n) and the number of

recursive calls is (d +1)O(logr n) w.h.p., since (d+1)O(logr n)

is polynomial in n. In particular, |C| = O(logr n).
We can compute |HC| (line 0) easily in one pass in O(n|C|)

time. Line 1 can also be done in another pass within the
same time bound. The algorithm thus takes (d + 1)O(logr n)

passes, requires O(r log n logr n) space, and runs in O((d +

1)O(logr n)n logr n) time w.h.p. Setting r = nΘ(δ) yields the
theorem.

The algorithm can be derandomized with O(2O(1/δ)n1+δ)
running time, like in Theorem 3.5 (because (1/r)-
approximations are special cases of (1/r)-nets).

The above theorem appears weaker than Theorem 3.8 in
terms of the dependence on δ, but Clarkson’s recursive al-
gorithm has a few advantages. First, the number of passes
is polynomial in d for a fixed δ. Second, the randomized
version can be applied to the entire class of LP-type prob-
lems [30].

3.4 A lower bound
We now establish a lower bound for linear programming

in 2-d (and consequently in higher dimensions). We show
that the algorithm in Theorem 3.1 is nearly optimal (up
to a constant factor in the number of passes, and ignoring
the 1/δO(1) factor in the space). Our proof is based on an
adversary argument by Munro and Paterson [24] that es-
tablished a similar lower bound for selection. Our proof is
not a straightforward adaptation, however, because (i) lin-
ear programming is different from selection (needless to say),
and (ii) Munro and Paterson’s proof assumes a comparison-
based model of computation where the only allowable opera-
tions on the input elements are comparisons of two elements.
This model is not sufficient to solve geometric problems.

Our proof works under a very general decision-tree com-
putation model: input coefficients are real numbers of un-
limited precision, and the only allowable operations on the
input halfplanes are testing the sign of a function evalu-
ated at the coefficients of a subset of halfplanes currently in
memory. The test function can be any continuous function
(typically but not necessarily multi-variate polynomials).

Theorem 3.10. Any
1/δ�-pass algorithm that can find the
lowest point in the intersection of n upper halfplanes in IR2

must require a storage of Ω(nδ) points.

Proof. It is more convenient to describe the proof in dual
space, where the problem is to find the bridge (upper-hull
edge) at the y-axis for a given point set. The lemma below
roughly states that after each pass, the problem on 2n points
remains as difficult as the problem on 2n/s points. Applying
the lemma repeatedly, we immediately obtain a lower bound
of about logs n passes for an algorithm that uses s space.
The theorem follows by setting s ≈ nδ.

Lemma 3.11. Given two open disks D1, D2 ⊂ IR2 separated
by the y-axis, and an algorithm that can store less than s
points, there exists a sequence Pj of n points inside Dj, a
subset Xj ⊆ Pj, and an open disk D′′j ⊂ Dj, for each j ∈
{1, 2}, such that after we run the first pass of the algorithm
on the concatenation of P1 and P2,

(i) no point of X1 ∪ X2 is in memory;

(ii) the result of the pass would be identical if we move the
points of X1 to arbitrary points in D′′1 and the points
of X2 to arbitrary points in D′′2 ;

(iii) the bridge for P1∪P2 is equal to the bridge for X1∪X2

at the y-axis, even if we move the points of X1 and X2

as in (ii).

(iv) |X1| = |X2| = �n/s� − 1.

Proof. The adversary builds the first half of the input P1

entirely using copies of s points p1, . . . , ps, whose coordinates
(x1, y1, . . . , xs, ys) are chosen from an open set U ⊂ IR2s to
be specified later. At every step, the adversary identifies a
point pi that is currently not in memory and chooses as the
next input point a new copy of pi. When a point pk is about
to be chosen for the �n/s�-th time, the adversary stops this
process, chooses copies of any point other than pk to fill in
the rest of P1, and sets X1 to contain all �n/s� − 1 existing

copies of pk. Observe that no two copies of pk can reside in
memory at any time, and at the end of the pass over P1, no
copy of pk is in memory.

Initially, we set U to contain all tuples (x1, y1, . . . , xs, ys)
such that the points p1 = (x1, y1), . . . , ps = (xs, ys) form
a strictly concave chain inside D1, and for each i, there
is a tangent line �i that touches the chain only at pi and
intersects D2. This set U is indeed nonempty and open.
Whenever the algorithm performs a test, we consider the
sign of the test function for each choice (x1, y1, . . . , xs, ys) ∈
U ; if not all choices yield the same sign, we refine U to a
smaller open subset in which they do. At the end of the
pass over P1, since U is open, we can fix the coordinates of
p1, . . . , ps and find a neighborhood D̂1 of pk so that moving
pk to any point in D̂1 would produce the same outcome. In
fact, each copy of pk can be moved to a different point in
D̂1, since no two copies of pk can participate in the same
test.

We now take a point q ∈ D2 on a tangent line �k at pk .
We can find a sufficiently small neighborhood D′1 ⊂ D̂1 at
pk and a sufficiently small neighborhood D′2 ⊂ D2 at q,
such that any line intersecting D′1 and D′2 is above every
pi (i �= k). Thus, the bridge between P1 and any point set
inside D′2 is defined by a point in X1, even if each copy of
pk is moved to an arbitrary point in D′1.

In a similar fashion, the adversary proceeds to build the
second half of the input P2 and the subset X2 during the
remainder of the first pass, using copies of s points that
form a concave chain inside D′2, with tangents intersecting
D′1. The disks D′1 and D′2 are similarly refined to D′′1 and
D′′2 , so that the bridge between P1 and P2 is defined by a
point in X1 and a point in X2, even if the points in X1 and
X2 are moved to arbitrary points in D′′1 and D′′2 respectively.
The construction is complete.

3.5 A read-only algorithm
One other well-known linear programming algorithm that

we have not examined yet is Seidel’s randomized incremen-
tal algorithm [29]. Unfortunately, this algorithm requires a
random permutation of the input, which we cannot afford to
store in the multi-pass setting; even if the input is given in
random order, the algorithm requires at least a logarithmic
expected number of passes. Still, Seidel’s algorithm can be
helpful in the less restrictive read-only model, if the algo-
rithm is applied in a recursive fashion, as we demonstrate
below. The same recursive idea appeared in another pa-
per [6] (in the context of solving “implicit” linear programs).
The space bound here beats our multi-pass lower bound.

Theorem 3.12. Given a read-only array of n halfspaces in
IRd, we can compute the lowest point in their intersection
by an algorithm that runs in O(n) expected time and uses
O(log n) space.

Proof. We describe a recursive algorithm, assuming that
the input resides in the union of at most d subarrays each
of size at most n: First divide the input into at most dr
blocks of size n/r. The idea is to treat each block as a single
constraint. More precisely, each block represents a convex
object (the intersection of the halfspaces in the block), and
the problem is to find the lowest point inside the intersection
of these r convex objects—a convex programming problem.

It is important to note that these objects are not explicitly
constructed but are rather viewed abstractly. Sharir and
Welzl [30] showed that a variation of Seidel’s randomized
incremental algorithm [29] for linear programming can be
used for convex programming. For O(r) constraints, the
algorithm requires an expected O(r) number of “violation
tests”—deciding whether a point is outside a given object—
and an expected O(logd r) number of “basis evaluations”—
computing the optimal solution for a given subset of d ob-
jects. For our convex objects, each violation test can be
done in O(n/r) time and O(1) space by scanning the n/r
halfspaces in a block; a basis evaluation can be done by mak-
ing a recursive call for the union of d subarrays. We there-
fore obtain the following recurrence for the running time for
some constant c:

T (n) ≤ (c logd r)T (n/r) + O(r · n/r).

Setting r to be a sufficiently large constant (depending only
on d) yields T (n) = O(n). The space requirement is O(r)
times the depth of the recursion O(logr n).

The above recursive algorithm also works well in the
cache-oblivious model.

4. 2-D CONVEX HULLS FOR
SORTED POINT SETS

We next examine special cases of the 2-d convex hull prob-
lem where more efficient multi-pass algorithms are possible.
In this section, we consider the case when the input points
are given in sorted order according to their x-coordinates.
Here, the best traditional algorithm is Graham’s scan, which
takes linear time [28]; however, this algorithm requires Ω(n)
space in the worst case. We give different strategies with
sublinear space. (Similar strategies might work also for in-
put that is preprocessed and stored in other “natural” or-
ders.)

We first introduce some terminology: a partial hull H of
a point set refers to a subset of the edges of the upper hull;
a gap of H refers to a maximal closed slab whose interior
does not intersect any edges of H ; the gap size of H refers
to the maximum number of points in the gaps.

4.1 Two algorithms
Our first algorithm is simple but not time-optimal.

Theorem 4.1. Given n points in IR2 sorted from left
to right, we can generate the vertices of the upper hull
from left to right by an O(1/δ)-pass algorithm that uses

O((1/δ2)n1/2+δ) space and runs in O((1/δ)n log n) time.

Proof. We first build a partial hull H with gap size at most√
n, as follows: just divide the plane into

√
n vertical slabs

each with
√

n points, and take the bridges at the walls of
these slabs. Computing these

√
n bridges reduces to solving

q =
√

n linear programs on a common set of constraints in
2-d, by duality, and can be done using Theorem 3.3.

Once H is constructed, we can finish in a single pass by
examining each gap σ of H from left to right and computing
the portion of the hull within σ, by applying an internal-
memory algorithm (Graham’s scan) to the points within σ.
With O(

√
n) space, the final pass takes linear time.

We now present a more complicated linear-time method
by adapting the standard “merge-hull” algorithm [28] based
on bottom-up divide-and-conquer. To minimize the num-
ber of passes, we implement the divide-and-conquer in a
breadth-first rather than depth-first manner, and we replace
binary merges with r-way merges. We also need to gener-
alize merging of convex hulls to merging of partial hulls,
accomplished by the following lemma:

Lemma 4.2. Given two vertically separated point sets in
IR2, and given their partial hulls with gap size g stored in
main memory, we can find the bridge between the two point
sets by a 2-pass algorithm that uses O(g) extra space and
runs in time linear in the number of points. Moreover, at
the end of each pass, the extra space usage is reduced to O(1).

Proof. We apply the binary-search algorithm by Overmars
and van Leeuwen [26, 28] to the two partial hulls HA and
HB of the two point sets A and B. In each iteration of this
algorithm, we examine the median edges of HA and HB,
perform some constant-time operations, and throw away half
of one of the two partial hulls. After O(log n) iterations,
one of the partial hulls, say HA, has no edge remaining. In
this case, we have identified a gap σA of HA that contains a
vertex defining the solution. In one pass, we read in the O(g)
points of A inside σA, compute the hull H ′A of these points,
and apply the binary-search algorithm to H ′A and HB. After
O(log n) iterations, HB has no edge remaining and we have
identified a gap σB of HB that contains the other vertex
defining the solution. We release H ′A from memory. In a
second pass, we read in the O(g) points of A in σA and the
O(g) points of B in σB and return their bridge.

Theorem 4.3. The running time in Theorem 4.1 can be
improved to O((1/δ)n).

Proof. We use a different method, outlined below, to com-
pute a partial hull H of the input point set with gap size at
most

√
n. As in the proof of Theorem 4.1, once H has been

computed, we can fill in the gaps in a final pass in linear
time.

0. divide the plane into
√

n vertical slabs each with√
n points

1. for each slab σ, create a partial hull of the points
inside σ with 0 edges

2. repeat:
3. divide the current partial hulls into groups of r

members each, from left to right
4. for each group G:
5. compute the bridge between every pair of

partial hulls in G
6. merge the r partial hulls in G into a single

partial hull

All partial hulls here have gap size at most
√

n and they
have total size O(

√
n) at every iteration. After O(logr n)

iterations, we arrive at one partial hull of the whole point
set, as desired. Line 5 takes O(r2) calls per group to the
subroutine in Lemma 4.2. The key idea is to perform these
calls simultaneously over all groups: the number of passes is

still two, the extra space usage is O(r2√n), and the running
time is O(rn). (It should be noted that during a pass, as
we go from one group to another, we only need to retain
O(r2) amount of information per group due to the last part
of Lemma 4.2.) Once the bridges have been identified in
line 5, line 6 can be done easily. The algorithm thus makes
a total of O(logr n) passes, uses O(r2√n) space, and runs

in O(rn logr n) time. Setting r = nδ/2 yields the theorem.

4.2 A lower bound
We now show that the near-

√
n space complexity is ac-

tually close to optimal. Our lower-bound proof this time
is information-theoretic rather than adversary-based. We
make the following reasonable assumption: to print a point
to the output stream, the point must currently reside in
memory.

Theorem 4.4. Any O(1)-pass algorithm that can generate
the vertices of the upper hull (in any order), given n points

in IR2 sorted from left to right, must require Ω(
�

n/ log n)
units of storage, where a “unit” refers to a point or log n
bits of information.

Proof. Set r = 2
√

n log n. Create a point set P as follows:
take r uniformly spaced arcs of length εε′ on the upper part
of the unit circle and place a group Gi of n/r points on the i-
th arc (indexed from left to right); also place an extra point
at the leftmost point of the circle. Let vi be the rightmost
point in Gi. Given a string z ∈ {0, 1}r , define a modified
point set P (z), obtained by moving vi upward by a distance
of ε whenever the i-th bit of z is 1. By making ε and ε′

sufficiently small, P (z) obeys the following property: if the
i-th bit of z is 0, all points in Gi are extreme; otherwise, no
point in Gi is extreme except for vi.

Suppose the algorithm makes p passes and at any time
stores at most s units of space. Assume that ps <

�
n/ log n.

For a given input, define the exit configuration to be the
concatenation of the memory content after each of the p
passes. (Here, for a point, its “content” comprises of its
index, together with an extra bit indicating whether it has
been moved upward.) The number of different exit configu-

rations is 2ps(log n+O(1)) < 2r. By the pigeonhole principle,
there exist two strings z, z′ ∈ {0, 1}r such that P (z) and
P (z′) have the same exit configuration.

Suppose that z and z′ agree in the first i − 1 bits, but
the i-th bit of z is 0 and the i-th bit of z′ is 1. Consider
each pass made by the algorithm on the two inputs P (z) and
P (z′). Since the memory content at the end of the previous
pass is identical and the inputs are identical up to vi, the
algorithm behaves identically before vi is read during the
pass; so, no points in Gi can be printed until vi is read. At
most s points are stored at this time; so at most s points in
Gi can be printed in the rest of the pass. On input P (z),
the algorithm is supposed to print all n/r points in Gi in p

passes. Thus, ps ≥ n/r = Ω(
�

n/ log n).

4.3 A read-only algorithm
To contrast with the above lower bound result, we show

that a more space-efficient algorithm is possible in the read-
only setting.

Theorem 4.5. Given a read-only array of n points in IR2

sorted from left to right, we can generate the vertices of
the upper hull from left to right by an algorithm that uses
O((1/δ)nδ) extra space and runs in O((1/δ)n) expected time.

Proof. We describe a recursive algorithm: First divide the
input into r blocks B1, . . . , Br each containing n/r points,
from left to right. As in the proof of Theorem 3.12, it is
helpful to view each block abstractly as a single convex ob-
ject. A variant of Graham’s scan can be used to compute all
tangents of the upper hull of r vertically separated convex
objects, by performing O(r) “primitive operations”—testing
whether an object is below a line, and finding the bridge be-
tween two objects. The first type of operation can be carried
out in O(n/r) time and O(1) space by scanning the points in
a block. The second type can be handled by Theorem 3.12
in O(n/r) expected time and O(log n) space. As a result,
we obtain a partial hull with gap size at most n/r.

After this process, we take each gap of this partial hull and
recursively output the upper hull of the points within each
gap. The expected running time satisfies the recurrence

T (n) = rT (n/r) + O(r · n/r),

which solves to T (n) = O(n logr n). The space bound is
O(r logr n). Setting r = nδ yields the theorem.

5. 2-D OUTPUT-SENSITIVE
CONVEX HULLS

For unsorted point sets, results better than Theorem 2.1
are still possible if the output size h is small. For example,
for points distributed uniformly in a square, it is known that
the expected value of h is logarithmic [28] (although for this
special case there is actually a simple one-pass algorithm).

We prove the following theorem by mimicking Kirkpatrick
and Seidel’s output-sensitive algorithm [18] based on top-
down divide-and-conquer. Again, the divide-and-conquer is
executed breadth-first and with a larger branching factor.
(It is interesting to note that Kirkpatrick and Seidel’s al-
gorithm was originally designed to make the running time
output-sensitive, not the space; other output-sensitive con-
vex hull algorithms do not seem to work as well in the multi-
pass model.)

Theorem 5.1. Given n points in IR2, we can generate the h
vertices of the upper hull from left to right, by an O(1/δ2)-
pass algorithm that uses O((1/δ2)hnδ) space and runs in
O((1/δ2)n log n) time.

Proof. We repeatedly insert edges to a partial hull H until
it becomes the complete hull:

0. H = ∅
1. repeat:
2. if the gap size of H is below a constant then

compute and print the hull within each gap
and return

3. for each gap σ of H :
4. divide σ into r subslabs each containing

O(1/r)-th of the points
5. compute the bridges at the walls of these

subslabs and insert them to H

The number of iterations of the outer loop is clearly
O(logr n). Line 4 can be carried out by an approximate
quantiles algorithm [16, 24]. Line 5 requires solving r linear
programs and can be carried out by Theorem 3.3 in O(1/δ)
passes, O((1/δ)rmδ) space, and at most O((1/δ)m log m)
time, where m is the number of points in the gap σ.

At each iteration of the outer loop, there are at most
h + 1 gaps. The key idea is to handle all O(h) iterations of
the inner loop (lines 3–5) simultaneously. Since each point
belongs to only one gap of H (which can be identified in
O(log h) time), the number of passes for lines 3–5 remains
O(1/δ), the space usage is O((1/δ)hrnδ), and the running
time is at most O((1/δ)n log n). The algorithm thus makes
O((1/δ) logr n) passes, uses O((1/δ)hrnδ) space, and runs in
O((1/δ)n log n logr n) time. The theorem follows by setting
r = nδ and readjusting δ.

If h is known, the above time bound can be reduced to
O(n log(c) n+n log h) by using different branching factors at
different levels, as in the proof of Theorem 3.2. We omit the
details.

We can also obtain a tradeoff result analogous to Theo-
rem 2.1:

Theorem 5.2. Given n points in IR2 and a parameter s, we
can generate the h vertices of the upper hull from left to right,
by an O((1/δ2)�h/s�)-pass algorithm that uses O((1/δ2)snδ)
space and runs in O((1/δ2)�h/s�n log n) time.

Proof. It is straightforward to modify the algorithm in
Theorem 5.1 to output the leftmost s hull edges with
O((1/δ2)snδ) space (by only keeping the leftmost s edges
of H in every iteration). Repeating this process �h/s� times
yields the theorem.

6. 3-D CONVEX HULLS
Finally, we consider the 3-d convex hull problem. As be-

fore, due to sorting lower bounds, we cannot hope for a non-
trivial result with a constant number of passes in general.
Still, we show that a result analogous to Theorem 2.1 is pos-
sible. This time, the algorithm is more involved but relies
on a standard divide-and-conquer approach in dual space
(similar to the proof of Theorem 3.4 as well as an algorithm
by Clarkson and Shor [11]).

Theorem 6.1. Given n points in IR3 and s ≥ n1/c log n
for a fixed constant c, we can generate the facets of the up-
per hull by an O((n/s) logc n)-pass algorithm that uses O(s)
space and runs in O((n2/s) logc n) time w.h.p.

Proof. We solve the dual problem of computing the vertices
of the lower envelope of a set H of planes in IR3 by the fol-
lowing recursive procedure (initially, we call Env0(IR

3)):

Envi(∆):
0. if i = c then compute and print the vertices of the

lower envelope of {h ∈ H | h intersects ∆} inside ∆
and return

1. take a random sample R of expected size O(r log n)
of {h ∈ H | h intersects ∆}

2. compute the canonical triangulation T of the lower
envelope of R restricted inside ∆

3. for each simplex ∆′ ∈ T do Envi+1(∆
′)

Let H∆ = {h ∈ H | h intersects ∆}. As in the analysis
of Theorem 3.4, we have |H∆′ | = O(|H∆|/r) for all ∆′ ∈ T
w.h.p. So, at each leaf of the recursion, we have |H∆| =
O(n/rc) w.h.p. Since lower envelopes have linear complexity
in IR3, |T | = O(r log n). So, there are O((r log n)c) leaves in
the recursion.

Line 0 requires a single pass with O(n/rc) space and
O(n + n/rc log(n/rc)) time w.h.p. Line 1 can be easily be
done in one pass. Line 2 takes O(r log2 n) time in main
memory. The overall number of passes is thus O((r log n)c),
the space usage is O(n/rc +r log n), and the running time is
O((r log n)c · (n + n/rc log(n/rc) + r log2 n)) w.h.p. Setting

r = (n/s)1/c yields the theorem.

7. CONCLUDING REMARKS
We have given new algorithms and lower bounds for some

basic geometric problems under the multi-pass model. We
hope that the techniques here (like pipelining) may be ap-
plicable to solve other geometric problems and may inspire
further work. Although one-pass streaming algorithms ad-
mittedly are more desirable than multi-pass algorithms in
many settings involving massive data sets, certain hardware
systems such as the graphics card [1] do favor streaming
computation with multiple passes. The multi-pass model
can also be viewed as a simpler form of external-memory
algorithms.

There are many interesting theoretical open problems con-
cerning tradeoffs of space, the number of passes, and running
time. For example, we mention the following questions:

• In view of Theorem 3.7, what is the exact smallest num-
ber of passes required to solve d-dimensional linear pro-
gramming with sublinear space? Can one prove a lower
bound of d + 1 passes?

• In view of Theorem 3.2, what is the most time-efficient
deterministic algorithm for linear programming in 2-d (or
higher dimensions) that uses a constant number of passes
and O(nδ) space? A similar question for the selection
problem also seems to be open (Munro and Paterson’s
algorithm [24] requires superlinear time).

• In view of Section 4, can one find good orderings of the
input that enable other problems to be solved effectively
in the streaming setting?

Acknowledgement. We thank Ian Munro for suggesting
that we look into algorithms in the read-only model.

8. REFERENCES
[1] P. K. Agarwal, S. Krishnan, N. H. Mustafa, and S.

Venkatasubramanian. Streaming geometric
optimization using graphics hardware. In Proc. 11th
European Sympos. Algorithms, Lect. Notes Comput.
Sci., vol. 2832, Springer-Verlag, pages 544–555, 2003.

[2] A. Bagchi, A. Chaudhary, D. Eppstein, and M. T.
Goodrich. Deterministic sampling and range counting
in geometric data streams. In Proc. 20th ACM
Sympos. Comput. Geom., pages 144–151, 2004.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D.
Sivakumar. An information statistics approach to
data stream and communication complexity. In Proc.

43rd IEEE Sympos. Found. Comput. Sci., pages
209–218, 2002.

[4] A. Borodin and S. Cook. A time-space tradeoff for
sorting on a general sequential model of computation.
SIAM J. Comput., 11:287–297, 1982.

[5] H. Brönnimann, T. M. Chan, and E. Y. Chen.
Towards in-place geometric algorithms and data
structures. In Proc. 20th ACM Sympos. Comput.
Geom., pages 239–246, 2004.

[6] T. M. Chan. An optimal randomized algorithm for
maximum Tukey depth. In Proc. 15th ACM-SIAM
Sympos. Discrete Algorithms, pages 423–429, 2004.

[7] T. M. Chan. Faster core-set constructions and data
stream algorithms in fixed dimensions. In Proc. 20th
ACM Sympos. Comput. Geom., pages 152–159, 2004.

[8] B. Chazelle, D. Liu, and A. Magen. Sublinear
geometric algorithms. In Proc. 35th ACM Sympos.
Theory Comput., pages 531–540, 2003.

[9] K. L. Clarkson. New applications of random sampling
in computational geometry. Discrete Comput. Geom.,
2:195–222, 1987.

[10] K. L. Clarkson. Las Vegas algorithms for linear and
integer programming when the dimension is small. J.
ACM, 42:488–499, 1995.

[11] K. L. Clarkson and P. W. Shor. Applications of
random sampling in computational geometry, II.
Discrete Comput. Geom., 4:387–421, 1989.

[12] P. Drineas and R. Kannan. Pass efficient algorithms
for approximating large matrices. In Proc. 14th
ACM-SIAM Sympos. Discrete Algorithms, pages
223–232, 2003.

[13] M. E. Dyer. Linear time algorithms for two- and
three-variable linear programs. SIAM J. Comput.,
13:31–45, 1984.

[14] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang. On graph problems in a semi-streaming
model. In Proc. 31st Int. Colloq. Automata,
Languages, and Programming, Lect. Notes Comput.
Sci., vol. 3142, Springer-Verlag, pages 531–543, 2004.

[15] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang. Graph distances in the streaming model:
the value of space. In Proc. 16th ACM-SIAM Sympos.
Discrete Algorithms, pages 745–754, 2005.

[16] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proc.
SIGMOD, pages 58–66, 2001.

[17] M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. Technical Note
1998-011, Digital Systems Research Center, Palo Alto,
CA, 1998.

[18] D. G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm? SIAM J. Comput.,
15:287–299, 1986.

[19] J. Matoušek. Derandomization in computational
geometry. In Handbook of Computational Geometry
(J.-R. Sack and J. Urrutia, eds.), pages 559–595,
Elsevier, Amsterdam, 2000.

[20] N. Megiddo. Linear time algorithms for linear
programming in R3 and related problems. SIAM J.
Comput., 12:759–776, 1983.

[21] N. Megiddo. Linear programming in linear time when
the dimension is fixed. J. ACM, 31:114–127, 1984.

[22] N. Megiddo. Partitioning with two lines in the plane.
J. Algorithms, 6:430–433, 1985.

[23] K. Mulmuley. Computational Geometry: An
Introduction Through Randomized Algorithms.
Prentice-Hall, Englewood Cliffs, N.J., 1994.

[24] J. I. Munro and M. S. Paterson. Selection and sorting
with limited storage. Theoret. Comput. Sci.,
12:315–323, 1980.

[25] S. Muthukrishnan. Data streams: Algorithms and
applications. Manuscript, http://www.cs.rutgers.
edu/~muthu/stream-1-1.ps, 2003.

[26] M. H. Overmars and J. van Leeuwen. Maintenance of
configurations in the plane. J. Comput. Sys. Sci.,
23:166–204, 1981.

[27] J. Pagter and T. Rauhe. Optimal time-space
trade-offs for sorting. In Proc. 39th IEEE Sympos.
Found. Comput. Sci., pages 264–268, 1998.

[28] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, New
York, 1985.

[29] R. Seidel. Small-dimensional linear programming and
convex hulls made easy. Discrete Comput. Geom.,
6:423–434, 1991.

[30] M. Sharir and E. Welzl. A combinatorial bound for
linear programming and related problems. In Proc.
9th Sympos. Theoret. Aspects Comput. Sci., Lect.
Notes Comput. Sci., vol. 577, Springer-Verlag, pages
569–579, 1992.

[31] S. Suri, C. D. Tóth, and Y. Zhou. Range counting
over multidimensional data streams. In Proc. 20th
ACM Sympos. Comput. Geom., pages 160–169, 2004.

