
When Can You Fold a Map?

Esther M. Arkin�, Michael A. Bender�, Erik D. Demaine�, Martin L. Demaine�,
Joseph S. B. Mitchell�, Saurabh Sethia�, and Steven S. Skiena�

� Department of Applied Mathematics and Statistics, State University of New York, Stony
Brook, NY 11794-3600, USA, email: �estie, jsbm�@ams.sunysb.edu.

� Department of Computer Science, State University of New York, Stony Brook, NY
11794-4400, USA, email: �bender, saurabh, skiena�@cs.sunysb.edu.

� Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada, email: �eddemaine, mldemaine�@uwaterloo.ca.

Abstract. We explore the following problem: given a collection of creases on a
piece of paper, each assigned a folding direction of mountain or valley, is there
a flat folding by a sequence of simple folds? There are several models of sim-
ple folds; the simplest one-layer simple fold rotates a portion of paper about a
crease in the paper by ����

Æ. We first consider the analogous questions in one
dimension lower—bending a segment into a flat object—which lead to interest-
ing problems on strings. We develop efficient algorithms for the recognition of
simply foldable 1-D crease patterns, and reconstruction of a sequence of simple
folds. Indeed, we prove that a 1-D crease pattern is flat-foldable by any means
precisely if it is by a sequence of one-layer simple folds.
Next we explore simple foldability in two dimensions, and find a surprising con-
trast: “map” folding and variants are polynomial, but slight generalizations are
NP-complete. Specifically, we develop a linear-time algorithm for deciding fold-
ability of an orthogonal crease pattern on a rectangular piece of paper, and prove
that it is (weakly) NP-complete to decide foldability of (1) an orthogonal crease
pattern on a orthogonal piece of paper, (2) a crease pattern of axis-parallel and
diagonal (45-degree) creases on a square piece of paper, and (3) crease patterns
without a mountain/valley assignment.

1 Introduction

The easiest way to refold a road map is differently.
— Jones’s Rule of the Road (M. Gardner [6])

Perhaps the best-studied problem in origami mathematics is the characterization of
flat-foldable crease patterns. A crease pattern is a straight-edge embedding of a graph
on a polygonal piece of paper; a flat folding must fold along all of the edges of the
graph, but no more. For example, two crease patterns are shown in Figure 1. The first
one folds flat into a classic origami crane, whereas the second one cannot be folded flat
(unless the paper is allowed to pass through itself), even though every vertex can be
“locally” flat folded.

The algorithmic version of this problem is to determine whether a given crease
pattern is flat-foldable. The crease pattern may also have a direction of “mountain” or

1



Fig. 1. Sample crease patterns. Left: the classic crane. Right: pattern of Hull [9], which cannot be
folded flat, for any mountain-valley assignment.

“valley” assigned to each crease, which restricts the way in which the crease can be
folded. (Our figures adhere to the standard origami convention that valleys are drawn
as dashed lines and mountains are drawn as dot-dashed lines.)

It is known that the general problem of deciding flat foldability of a crease pattern is
NP-hard (Bern and Hayes [2]). In this paper, we consider the important and very natural
case of recognizing crease patterns that arise as the result of flat foldings using simple
foldings. In this model, a flat folding is made by a sequence of simple folds, each of
which folds one or more layers of paper along a single line segment. As we define in
Section 2, there are different types of simple folds (termed “one-layer,” “some-layers,”
and “all-layers”), depending on how many layers of paper are required or allowed to be
folded along a crease.

Note that not every flat folding can be achieved by a simple folding. For example,
the crane in Figure 1 (top) cannot be made by a simple folding. Also, the hardness
gadgets of [2] require nonsimple folds.

The problem we study in this paper is that of determining whether a given crease
pattern (usually with specified mountain and valley assignments) can be folded flat by
a sequence of simple folds, and if so, to construct such a sequence of folds.

Several of our results are based on the special case in which the creases in the piece
of paper are all parallel to one another. This case can be seen to be equivalent to a one-
dimensional folding problem of folding a line segment (“paper”) according to a set of
prescribed crease points (possibly labeled “mountain” or “valley”). We will therefore
refer to this special case, which has a rich structure of its own, as the “1-D” case to
distinguish it from the general 2-D problem. In contrast to the 2-D problem, we show
that 1-D flat foldability is equivalent to 1-D simple foldability.

Motivation. In addition to its inherent interest in the mathematics of origami, our
study is motivated by applications in sheet metal and paper product manufacturing,
where one is interested in determining if a given structure can be manufactured using
a given machine. (See references cited below.) While origamists can develop particular
skill in performing nonsimple folds to make beautiful artwork, practical problems of
manufacturing with sheet goods require simple and constrained folding operations. Our
goal is to develop a first suite of results that may be helpful towards a fuller algorithmic
understanding of the several manufacturing problems that arise, e.g., in making three-
dimensional cardboard and sheet-metal structures.

2



Related Work. Our problem is related to the classic combinatorics question of map
folding [15]. This question asks for the number of foldings of a particular crease pattern,
namely an �� � rectangular grid, by a sequence of simple folds. See also the discus-
sion in Gardner’s book [6]. In contrast with this combinatorics question, we study the
algorithmic complexity of the decision problem, also in some more general instances
of crease patterns.

The mathematical and algorithmic problems arising in the study of flat origami
have been examined by several researchers, e.g., Hull [9], Justin [10], Kawasaki [12],
and Lang [13]. Of particular relevance to our work is the paper of Bern and Hayes [2],
in which the general problem of deciding flat foldability of a crease pattern is shown
to be strongly NP-hard. Demaine et al. [4] used computational geometry techniques to
show that any polygonal (connected) silhouette can be obtained by simple folds from a
rectangular piece of paper.

There has been quite a bit of work on the related problems of manufacturabil-
ity of sheet metal parts (see, e.g., [21]) and folding cartons (see, e.g., [14]). Existing
CAD/CAM techniques (including BendCad and PART-S) rely on worst-case exponential-
time state space searches (using the A� algorithm). In general, the problem of bend se-
quence generation is a challenging (and provably hard [1]) coordinated motion planning
problem. For example, Lu and Akella [14] utilize a novel configuration-space formu-
lation of the folding sequence problem for folding cartons using fixtures; their search,
however, is still worst-case exponential time. Our work differs from the prior work on
sheet metal and cardboard bending in that the structures we are folding are ultimately
“flat” in their folded states (all bend angles in the input crease pattern are ���� Æ, ac-
cording to a mountain-valley assignment that is part of the input crease pattern). Also,
we are concerned only with the feasibility of the motion of the (stiff) material that is be-
ing folded – does it collide with itself during the folding motion? We are not addressing
here the issues of reachability by the tools that perform the folding. As we show, even
with the restrictions that come with the problems we study, there is a rich mathematical
and algorithmic theory of foldability.

Summary of Our Results.1

(1) We analyze the 1-D one-layer and some-layers cases, giving a full characterization
of flat-foldability and an ���� algorithm for deciding foldability and producing a
folding sequence, if one exists.

(2) We analyze the 1-D all-layers case as a “string folding” problem. In addition to a
simple ����� algorithm, we give an algorithm utilizing suffix trees that requires
time linear in the bit complexity of the input, and a randomized algorithm with
expected ���� running time.

(3) We give a linear-time algorithm for deciding foldability of orthogonal crease pat-
terns on a rectangular paper (the “map folding problem”), in the one-, some-, and
all-layers cases, based on our 1-D results.

1 Due to space limitations, many of the proofs and details are omitted from this extended ab-
stract. The reader is referred to the full paper.

3



(4) We prove that it is (weakly) NP-complete to decide foldability of an orthogonal
crease pattern on a piece of paper that is more general than a rectangle: a simple
orthogonal polygon.

(5) We also prove that it is (weakly) NP-complete to decide foldability of a rectangular
piece of paper with a crease pattern that includes diagonal creases (at 45-degrees),
in addition to axis-parallel creases.

(6) We show that it is (weakly) NP-complete to decide foldability of a orthogonal piece
of paper having a crease pattern for which no mountain-valley assignment is given.

2 Definitions

We are concerned with foldings in one and two dimensions. A one-dimensional piece
of paper is a (line) segment in ��. A two-dimensional piece of paper is a (connected)
polygon in ��, possibly with holes. In both cases, the paper is folded through one
dimension higher than the object; thus, segments are folded through� � and polygons
are folded through��. Creases have one less dimension; thus, a crease is a point on a
segment and a line segment on a polygon.

A crease pattern is a collection of creases on the piece of paper, no two of which
intersect except at a common endpoint. A folding of a crease pattern is an isometric
embedding of the piece of paper, bent along every crease in the crease pattern (and not
bent along any segment that is not a crease). In particular, each facet of paper must be
mapped to a congruent copy, the connectivity between facets must be preserved, and
the paper cannot pass through itself. See Figure 2.

Fig. 2. Sample nonflat foldings in one and two dimensions.

A flat folding has the additional property that it lies in the same space as the unfolded
piece of paper. That is, a flat folding of a segment lies in ��, and a flat folding of a
polygon lies in ��. In reality, there can be multiple layers of paper at a point, so the
folding really occupies a finite number of infinitesimally close copies of � � or ��.
More formally, a flat folding can be specified by a function mapping the vertices to
their folded positions, together with a partial order of the facets of paper that specifies
their overlap order [2, 9, 13].

If we orient the piece of paper to have a top and bottom side, we can talk about the
direction of a crease in a flat folding. A mountain brings together the bottom sides of

4



the two adjacent facets of paper, and a valley brings together the top sides. A mountain-
valley assignment is a function from the creases in a crease pattern to ���� �. Together,
a crease pattern and a mountain-valley assignment form a mountain-valley pattern.

This paper is concerned with the following generic question.

Problem 1. Simple Folding: Given a mountain-valley pattern, is there a simple folding
satisfying the specified mountains and valleys? If so, construct such a simple folding.

There are three natural versions of this problem, depending on the type of “sim-
ple folds” allowed. In general, a simple folding is a sequence of simple folds. Each
simple fold takes a flat-folded piece of paper, and folds it into another flat folding us-
ing additional creases. There are three types of simple folds: one-layer, all-layers, and
some-layers.

A one-layer simple fold � is a crease on the folded piece of paper, together with a
direction. If we look at the unfolded piece of paper, then � partitions it into two parts,
call them � and �. Performing � corresponds to rotating � about � by ���� Æ, where
� depends on the fold direction, if this does not cause the paper to cross itself. This
makes just a single crease, which is what we mean by folding one layer of paper.

An all-layers simple fold � is also a crease together with a direction. Now we con-
sider the partition of the flat folding (instead of the unfolded piece of paper) by � into
two parts, call them � and � again. Performing � corresponds to rotating (all layers of)
� about � by ����Æ. This makes a crease through all of the layers of paper at � . Note
that this type of fold can never cause the paper to cross itself.

Finally, a some-layers simple fold � is the most general. It takes some of the top
[bottom] layers of �, and rotates them about � by ���Æ [����Æ], provided the paper
does not cross itself.

3 1-D: One-Layer and Some-Layers

This section is concerned with the 1-D one-layer simple-fold problem. We will prove
the surprising result that we only need to search for one of two local operations to
perform. The two operations are called crimps and end folds, and are shown in Figure 3.

M V

��

Crimp

End fold

����

��

����

��

M

���� ��
����

Fig. 3. The two local operations for one-dimensional one-layer folds.

More formally, let 	�� 
 
 
 � 	� denote the creases on the segment, oriented so that 	 �
is left of 	� for � � . Let 	� [	���] denote the left [right] end of the segment. Despite the

5



“	” notation (which is used for convenience), 	� and 	��� are not considered creases;
instead they are called the ends.

First, a pair �	�� 	���� of consecutive creases is crimpable if 	� and 	��� have op-
posite directions and �	��� � 	�� � �	� � 	���� � �	��� � 	����
 Crimping such a pair
corresponds to folding 	� and then folding 	���, using one-layer simple folds.

Second, 	� is a foldable end if �	� � 	�� � �	� � 	��, and 	��� is a foldable end if
�	��� � 	�� � �	�� 	����. Folding such an end corresponds to performing a one-layer
simple fold at the nearest crease (crease 	� for end 	�, and crease 	� for end 	���).

We claim that one of the two local operations exists in any flat-foldable 1-D mountain-
valley pattern. We claim further that an operation exists for any pattern satisfying a cer-
tain “mingling property.” Specifically, a 1-D mountain-valley pattern is called mingling
if for every sequence 	�� 	���� 
 
 
 � 	� of consecutive creases with the same direction,
either (1) �	��� � 	�� � �	� � 	����; or (2) �	��� � 	� � � �	� � 	����. We call this the
mingling property because, for maximal sequences of consecutive creases with the same
direction, it says that there are folds of the opposite direction nearby. In this sense, the
mountain-valley pattern is “crowded” (mountains and valleys must “mingle” together).

First we show (in the full paper) that mingling mountain-valley patterns include
flat-foldable patterns:

Lemma 1. Every flat-foldable 1-D mountain-valley pattern is mingling.

Next we show (again, see the full paper) that having the mingling property suffices
to imply the existence of a single crimpable pair or foldable end.

Lemma 2. Any mingling 1-D mountain-valley pattern has either a crimpable pair or a
foldable end.

Ideally, we could show at this point that performing either of the two local opera-
tions preserves the mingling property, and hence a mountain-valley pattern is mingling
precisely if it is flat-foldable. Unfortunately this is false; see the full paper. Instead, we
must prove that flat foldability is preserved by each of the two local operations; i.e., if
we treat the folded object from a single crimp as a new segment, it is flat-foldable.

M M

Crimp

M V M M

Fig. 4. A mingling mountain-valley pattern that when crimped is no longer mingling and hence
not flat-foldable. Indeed, the original mountain-valley pattern is not flat-foldable.

Lemma 3. Folding a foldable end preserves foldability.

Lemma 4. Crimping a crimpable pair preserves flat foldability.

6



Combining all of the previous results, we have the following:

Theorem 1. Any flat-foldable 1-D mountain-valley pattern can be folded by a sequence
of crimps and end folds.

A particularly interesting consequence of this theorem is the following:

Corollary 1. The following are equivalent for a 1-D mountain-valley pattern � :

1. � has a flat folding.
2. � has a some-layers simple folding.
3. � has a one-layer simple folding.

Finally, let us show (in the full paper) that Theorem 1 leads to a simple linear-time
algorithm:

Theorem 2. The 1-D one-layer and some-layers simple-fold problems can be solved in
���� worst-case time on a machine supporting arithmetic on the input lengths.

4 1-D: All-Layers Simple Folds

The 1-D all-layers simple-fold problem can be cast as an interesting “string folding”
problem. (This folding problem is not to be confused with the well-known protein/string
folding problem in biology [3].) The input mountain-valley pattern can be thought of
as a string of lengths interspersed with mountain and valley creases. Specifically, we
will assume that the input lengths are specified as integers or equivalently rational num-
bers. (Irrational numbers can be replaced by close rational approximations, provided
the sorted order of the lengths is preserved.)

Thus, an input string is of the form �� 	� �� 	� � � � 	��� ���� 	� ��, where each
	� 	 ���� � and each �� is a positive rational number. We call each 	� and �� a symbol
of the string. It will be helpful to introduce some more uniform notation for symbols.
For a string � of length �, we denote the �th symbol by ����, where � � � � �.

When we make an all-layers simple fold, we cannot “cover up” a crease except
with a matching crease (which when unfolded is in fact the other direction), because
otherwise this crease will be impossible to fold later. To formalize this condition, we
define the complement of symbols in the string: ��	
�� �� � ��, ��	
��� � � ,
and ��	
�� � � � . Finally, we call a crease (� or � symbol) ���� allowable if
��� � �� � ��	
���� � ��� for all � � � � 	��� � �� � � ��, except that ���� and
���� (the ends) are allowed to be shorter than their complements.

Lemma 5. A mountain-valley pattern can be folded by a sequence of all-layers simple
folds precisely if there is an allowable fold, and the result after performing that fold has
an allowable fold, and so on, until all creases of the segment have been folded.

By Lemma 5, the problem of testing foldability reduces to repeatedly finding allow-
able folds in the string. Testing whether a fold at position � is allowable can clearly be
done in ����	������ �� ��� time, by testing the boundary conditions and whether
������ � ��	
�������� for � � � � 	������ �� ��. Explicitly testing all creases

7



in this manner would yield an �����-time algorithm for finding an allowable fold (if
one exists). Repeating this ���� times results in a naive ����� algorithm for testing
foldability.

This cubic bound can be improved by being a bit more careful. In ��� �� time,
we can determine for each crease ���� the largest value of � for which ��� � �� �
��	
���� � ��� for all � � � � �. Using this information it is easy to test whether a
crease ���� is allowable. After making one of these allowable folds, we can in���� time
update the value of � for each crease, and hence maintain the collection of allowable
folds in linear time. This gives an overall ����� bound, which we now proceed to
improve further.

We present two efficient algorithms for folding strings. The algorithm in Section 4.1
is based on suffix trees and runs in time linear in the bit complexity of the input. In
Section 4.2, we use randomization to obtain a simpler algorithm that runs in ���� time.

4.1 Suffix-Tree Algorithm

In the full paper we prove the following:

Theorem 3. A string � of length � can be tested for all-layers simple foldability, in
time that is dominated by that to construct a suffix tree on �.

The difficulty with the time bound is that sorting the alphabet seems to be required.
Other than the time to sort the alphabet, it is possible to construct a suffix tree in ����
time [5]. To sort the alphabet in the comparison model,��� ���� �� time suffices, where
�� is the number of distinct input lengths. In particular, if the input lengths are encoded
in binary, then the algorithm is linear in this bit complexity. On a RAM, the current
state-of-the-art algorithm for integer sorting [20] uses ������� ����� �� time and linear
space.

4.2 Randomized Algorithm

In this section we describe a simple randomized algorithm that solves the 1-D all-layers
simple-fold problem in ���� time. There are two parts to the algorithm:

1. assigning labels to the input lengths so that two lengths are equal precisely if they
have the same label; and

2. finding and making allowable folds.

The first part is essentially element uniqueness, and can be solved in linear expected
time using hashing. For example, the dynamic hashing method described by Motwani
and Raghavan [16] supports insertions and existence queries in���� expected time. We
can use this data structure as follows. For each input length, check whether it is already
in the hash table. If it is not, we assign it a new unique identifier, and add it to the hash
table. If it is, we use the existing unique identifier for that value (stored in the hash
table). Let �� denote the number of distinct labels found in this process (or �, whichever
is larger).

8



For the second part, we will show that each performed fold can be found in ��� �
�� time, where � is the number of creases removed by the discovered fold (in other
words, the minimum length to an end of the segment to be folded). However, it is
possible that the algorithm makes a mistake, and that some of the reported folds are
not actually possible. Fortunately, mistakes can be detected quickly, and after ����
expected iterations the pattern will be folded. (Unless of course the pattern is not flat-
foldable, in which case the algorithm reports this fact correctly.)

In the full paper we give details of the algorithm, and conclude:

Theorem 4. The 1-D all-layers simple-fold problem can be solved in ���� expected
time on a machine supporting random numbers and hashing of the input lengths.

5 Orthogonal Simple Folds in 2-D

In this section, we generalize our results for 1-D simple folds to orthogonal 2-D crease
patterns, which consist only of horizontal and vertical folds on a rectangular piece of
paper, where horizontal and vertical are defined by the sides of the rectangular paper.
In such a pattern, the creases must go all the way through the paper, because every
vertex of a flat-foldable crease pattern has degree at least four [2, 9]. Hence, the crease
pattern is a map or grid of creases. Recall from Section 3 that the opposite holds in 1-D:
one-layer and some-layers folds are equivalent to general flat-foldability.

In this section we handle all three cases of simple folds: one-, some-, and all-layers
folds. To know what time bounds we desire, we must first discuss encoding the input. A
natural encoding of maps specifies the height of each row and the width of each column,
thereby using �� � �� space for an �� � �� grid. The mountain-valley assignment,
however, requires ������� space to specify the direction for each edge of the grid.
Hence, our goal of linear time amounts to being linear in � � � ���.

It is easy to see that in exactly one of the two orientations, vertical or horizontal,
there must be at least one crease line, all the way across the paper, that is entirely valley
or mountain. (If there is no such crease, the pattern is unfoldable. And it cannot be that
there is both a horizontal crease and a vertical crease all the way through the paper,
since their intersection would be a vertex that is locally unfoldable.) Without loss of
generality, assume it is horizontal. Let the set of these horizontal fold lines be 
.

We claim that all fold lines in 
 must be folded before any other fold. This is so
because (1) folding along any vertical fold line � will lead to a mismatch of creases at
the intersection of � with any unfolded elements of 
 and (2) horizontal folds not in

 are not entirely mountain or valley and hence cannot be folded before some vertical
fold is made. Thus we have a corresponding 1-D problem (one-, some- or all-layer
folds) to solve with added necessary condition that the non-
 folds must match up
appropriately after all the folds in 
 are made. (The time spent of checking for this
necessary condition can be attributed to the non-
 folds that vanish after every fold.)
Since 
 contains at least one fold, performing the 
 folds (strictly) reduces the size
of the problem, and we continue. The base case consists of just horizontal or vertical
folds, which corresponds to a 1-D problem. In summary we have:

9



Lemma 6. If a crease pattern is foldable, it remains foldable after the folds in 
 have
been made in any feasible way considering 
 to be a 1-D problem and ignoring other
creases.

To find 
 quickly we maintain the number of mountain and valley creases for each
row and column of creases. We maintain these numbers as we make folds in 
. To
do this we traverse all the creases that will vanish after a fold and decrement the cor-
responding numbers. The cost of this traversal is attributed to the vanishing creases.
Every time the number of mountain or valley creases hits zero in a column or a row, we
add the row or column to a list to be used as the new 
 in the next step. Thus,

Theorem 5. The problem of deciding simple foldability of an orthogonal crease pattern
on a rectangular piece of paper can be solved in linear time.

6 Hardness of Simple Folds in 2-D

In this section we prove that the problem of deciding whether a 2-D axis-parallel
mountain-valley pattern can be simply folded is (weakly) NP-hard, if we allow the
initial paper to be an arbitrary orthogonal polygon. We also show that it is (weakly)
NP-hard to decide whether a mountain-valley pattern on a square piece of paper can be
folded by some-layers simple folds, if the creases are allowed to be axis-parallel plus at
a 45-degree angle.

Both hardness proofs are based on a reduction from an instance of PARTITION: given
a set � of � integers ��� ��� 
 
 
 � �� whose sum is �, does there exist a set � � � such
that
�

��� � � ���? For convenience we define the set �� � � � �. Also, without loss
of generality, we assume that �� 	 �.

The PARTITION problem is known to be (weakly) NP-hard [7]. We transform an in-
stance of the PARTITION problem into an orthogonal 2-D crease pattern on a orthogonal
polygon, as shown in Figure 5.

In the figure, all creases are valleys. There is a staircase of width � corresponding
to ��� 
 
 
 � ��, where � � � � ���. There is a step in the staircase of length �� corre-
sponding to each element �� in � . � is a constant greater than ���. Also �� � ��.
Also let there be a coordinate system with horizontal �-axis and vertical �-axis.

Lemma 7. If the PARTITION instance has a solution, then the crease pattern in Figure 5
is simply foldable.

Lemma 8. If the crease pattern in Figure 5 is simply foldable, there exists a solution to
the PARTITION instance.

Lemmas 7 and 8 imply the following theorem.

Theorem 6. The problem of deciding simple foldability of a orthogonal paper with an
orthogonal crease pattern is (weakly) NP-complete.

In the full paper, we prove the following theorem, which shows that even on a
rectangular piece of paper it is hard to decide foldability if, besides axis-parallel, there
are creases in diagonal directions (45 degrees with respect to the axes):

10



�� ��

��

��

��

�

��

��

��

��

�� ����

����

��

��

��

��

�

��

��

��

�

��
��

��

��

��

��

��

�

��

��

��

��

��

��

����

��

�

��

��

��

��

�

Fig. 5. Top: Hardness reduction from PARTITION problem. Bottom: Semi-folded staircase con-
fined between � coordinates of �� and ��. The top side of the paper is drawn white and the other
side is drawn gray.

Theorem 7. It is (weakly) NP-complete to decide the foldability of an (axis-parallel)
square sheet of paper with a crease pattern having axis-parallel creases and creases
at the diagonal angles of 45 degrees with respect to the axes, for both all-layers and
some-layers simple folds.

The problem is open for the one-layer case.

7 No Mountain-Valley Assignments

An interesting case to consider is when all creases do not have mountain-valley assign-
ment: Any crease can be folded in either direction. Even with this flexibility, we are
able to show that the problem is hard (see the full paper for the proof):

Theorem 8. The problem of deciding the foldability of a orthogonal paper with a
crease pattern that does not have mountain-valley assignment is (weakly) NP-complete,
for both the all-layers and some-layers cases.

The problem is open for the one-layer case.

Acknowledgments We thank Jack Edmonds for helpful discussions which inspired this
research. E. Arkin acknowledges support from the NSF (CCR-9732221) and HRL Labs.
M. Bender acknowledges support from HRL Labs. J. Mitchell acknowledges support
from HRL Labs, the NSF (CCR-9732221), NASA (NAG2-1325), Northrop-Grumman,
Sandia, Seagull Technology, and Sun Microsystems.

11



References

1. E. M. Arkin, S. P. Fekete, J. S. B. Mitchell, and S. S. Skiena. On the manufacturability of
paperclips and sheet metal structures. In Proc. of the 17th European Workshop on Computa-
tional Geometry, pages 187–190, 2001.

2. M. Bern and B. Hayes. The complexity of flat origami. In Proc. of the 7th ACM-SIAM
Symposium on Discrete Algorithms, pages 175–183, 1996.

3. P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yannakakis. On the
complexity of protein folding. J. of Computational Biology, 5(3), 1998.

4. E. D. Demaine, M. L. Demaine, and J. S. B. Mitchell. Folding flat silhouettes and wrap-
ping polyhedral packages: New results in computational origami. In Proc. of the 15th ACM
Symposium on Computational Geometry, 1999.

5. M. Farach. Optimal suffix tree construction with large alphabets. In Proc. of the 38th Symp.
on Foundations of Computer Science, pages 137–143, 1997.

6. M. Gardner. The combinatorics of paper folding. In Wheels, Life and Other Mathematical
Amusements, Chapter 7, pp. 60–73. W. H. Freeman and Company, 1983.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

8. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J.
on Computing, 13(2):338–355, 1984.

9. T. Hull. On the mathematics of flat origamis. Congressum Numerantium, 100:215–224,
1994.

10. J. Justin. Towards a mathematical theory of origami. In Koryo Miura, editor, Proc. of the
2nd International Meeting of Origami Science and Scientific Origami, pages 15–29, 1994.

11. R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development, 31(2):249–260, 1987.

12. T. Kawasaki. On the relation between mountain-creases and valley-creases of a flat origami.
In H. Huzita, editor, Proc. of the 1st International Meeting of Origami Science and Tech-
nology, pages 229–237, Ferrara, Italy, December 1989. An unabridged Japanese version
appeared in Sasebo College of Technology Report, 27:153–157, 1990.

13. R. J. Lang. A computational algorithm for origami design. In Proc. of the 12th ACM Sym-
posium on Computational Geometry, pages 98–105, 1996.

14. L. Lu and S. Akella. Folding cartons with fixtures: A motion planning approach. IEEE
Trans. on Robotics and Automation, 16(4):346–356, 2000.

15. W. F. Lunnon. Multi-dimensional map-folding. The Computer Journal, 14(1):75–80, 1971.
16. R. Motwani and P. Raghavan. Randomized Algorithms, Chapter 8.4, pages 213–221. Cam-

bridge University Press, 1995.
17. B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification and paral-

lelization. SIAM J. on Computing, 17(6):1253–1262, 1988.
18. J. S. Smith. Origami profiles. British Origami, 58, 1976.
19. J. S. Smith. Pureland Origami 1, 2, and 3. British Origami Society. Booklets 14, 29, and 43,

1980, 1988, and 1993.
20. M. Thorup. Faster deterministic sorting and priority queues in linear space. In Proc. of the

9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 550–555, 1998.
21. C-H. Wang. Manufacturability-driven decomposition of sheet metal. PhD thesis, Carnegie

Mellon University 1997. Technical report CMU-RI-TR-97-35.

12


