
91

Cutting a Country for Smallest Square Fit

Marc van Kreveld1 and Bettina Speckmann2�

1 Institute for Information and Computing Sciences, Utrecht University,
marc@cs.uu.nl

2 Institute for Theoretical Computer Science, ETH Zürich,
speckman@inf.ethz.ch

Abstract. We study the problem of cutting a simple polygon with n
vertices into two pieces such that – if we reposition one piece disjoint of
the other, without rotation – they have the minimum possible bounding
square. If we cut with a single horizontal or vertical segment, then we can
compute an optimal solution for a convex polygon with n vertices in O(n)
time. For simple polygons we give an O(n4α(n) logn) time algorithm.

1 Introduction

When browsing through the Rand McNally’s Road Atlas of the U.S.A., it ap-
pears that not every state is shown on one single or double page. Sometimes the
northern and southern halves of a state are shown on two consecutive double
pages. Since a state can be modeled by a simple polygon, the aspect ratio of
a double page is fixed, and the map scale is supposed to be the same on both
double pages, the problem can be modeled as covering a simple polygon by two
equal-size axis-aligned squares of smallest size. The squares represent the pages,
and by scaling any fixed aspect ratio can be handled. Algorithmically, the prob-
lem of covering a simple polygon with two pages is not very difficult and can be
solved in linear time. In the case of three map pages, a more involved algorithm
can still achieve linear running time, which was shown by Hoffmann [5].

Fig. 1. Fitting a country into a square.

� Supported by the Berlin-Zürich Graduate Program “Combinatorics, Geometry, and
Computation”, financed by the German Science Foundation (DFG) and ETH Zürich.

P. Bose and P. Morin (Eds.): ISAAC 2002, LNCS 2518, pp. 91–102, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



92 M. van Kreveld and B. Speckmann

Another method the Rand McNally’s Road Atlas uses to make states fit
better on pages is to cut them into two pieces, rearrange these, and fit them on
a single or a double page. For example, the western part of Florida can be cut
off and placed at a different position to allow a larger map scale. In some edition
of the road atlas this technique was applied to seven of the states.
This paper discusses an abstracted version of the problem of cutting a country

or state optimally and fitting the pieces on a page. A country is represented by
a simple polygon and we cut this polygon with either a horizontal or vertical
line segment into two simply-connected pieces. We then rearrange the pieces
by translation only and do not allow them to intersect. An optimal cut and an
optimal placement are the ones that result in the smallest enclosing square. For a
convex polygon with n vertices we compute an optimal solution, i.e., an optimal
cut and an optimal placement, in O(n) time. For a simple polygon we give an
O(n4α(n) log n) time algorithm.
In various papers, Daniels and Milenkovic report results on containment,

motivated by marker making in the textile industry. Generally, multiple-part,
translational containment problems are NP-hard [2] and known algorithms con-
tain the number of parts in the exponent. Simplified to be comparable to our
case, fitting two convex polygons with n vertices inside a constant size polygon
takes O(n) time [7], if the polygons are non-convex it requires O(n4) time [2].
If minimization of the enclosing polygon is of interest, then Milenkovic shows a
lower bound of Ω(n4) for a related problem [6].
Alt and Hurtado [1] discuss packing convex polygons into a rectangle of

smallest size, measured either by area or by perimeter. They study both packing
with overlap and without overlap. Of the latter type, they show that a smallest
rectangle can be found in linear time for two convex polygons when no rotation
is allowed.

m2

(m+1)2

m (m+1)

m (m+1)

Fig. 2. Dissecting a rectangle and a simple polygon to form a square.

Dissections have been studied at length in Frederickson’s book [3]. It contains
an interesting example of a rectangle that requires a dissection consisting of many
segments so that after repositioning one piece a square is formed, see Figure 2.
To the right, there is another example to show that optimal cuts may have a
complex shape.



Cutting a Country for Smallest Square Fit 93

The algorithmic problems and results mentioned above are different from
ours because we compute both a cut and a packing into a smallest square.
Previous papers compute only a packing (and papers on cutting are less related
to ours). Combinatorially, there are a linear number of possible places for a
horizontal or vertical cut through a simple polygon. Still our bound in the convex
case remains linear and in the non-convex case it is worse only by a factor of
O(α(n) log n) compared with algorithms that do packing only. In our solution
to the non-convex case most of the complications do not arise from the linearly
many combinatorially distinct cuts to consider, but from discretizing the position
of the cut while maintaining the optimality and efficiency.
In Section 2 we present the algorithm for convex polygons and in Section 3

we describe the algorithm for non-convex polygons. We conclude with some open
problems.

2 Cutting a Convex Polygon

Assume we are given a convex polygon P with n vertices. Our goal is to find
a vertical line segment C that cuts P into two parts A and B and then to
translate A to a position in which A and B do not properly intersect, such that
the smallest enclosing axis-parallel square S for A and B is minimized. If we also
allow horizontal cuts, then we repeat the algorithm with x- and y-coordinates
exchanged.
In order to efficiently find an optimal solution, i.e. a configuration that is

determined by an optimal cut and an optimal placement, we identify certain
properties of a subset of the optimal solutions. In particular, we show that there
is always an optimal solution such that (i) either A or B determine the x or
the y-span of S, (ii) A and B are in contact, and (iii) both A and B are in
contact with either the left or the right side of S (see Lemma 1). Restricting
ourselves to search for optimal solutions that have the properties just described
and incorporating the following two observations yields a surprisingly simple
algorithm that computes an optimal solution in linear time.
First, we define the NW chain of a convex polygon Q to be the polygonal

chain that is the part of the boundary of Q from the leftmost vertex to the
topmost vertex, clockwise. The SW chain, NE chain, and SE chain are defined
similarly. Horizontal and vertical edges are included in the chain their leftmost
endpoint – clockwise – is adjacent to.

Observation 1 Given two convex polygons Q and R, and a square S, such
that s = max{x-span(R), y-span(R)}, then if Q and R both fit in S, there is a
placement where Q (i) touches the left side of S, and R in the NW chain, or
(ii) touches the left side of S, and R in the SW chain, or (iii) touches the right
side of S, and R in the NE chain, or (iv) touches the right side of S, and R in
the SE chain.

Applied to A and B this observation translates to: If B is the polygon that
determines the span of S then there are only four canonical placements for A.



94 M. van Kreveld and B. Speckmann

Second, we can observe that if we consider an optimal solution which has the
properties described above, then while shifting the cut to shrink one polygon
and grow the other, always keeping them in contact, the contact moves only in
one direction along the boundary of each polygon, passing over each vertex at
most once. For a specific constellation this observation translates to:

Observation 2 If A and B fit in S, and the x-span of B is s, and A is in contact
with the left side of S and the NW chain of B, then when the cut is shifted to
shrink B and grow A, the contact between A and B can only go rightward on B
(clockwise) and rightward on A (counterclockwise), assuming A keeps touching
the left side of S and the NW chain of B.

Similar observations hold if A is in contact with any other chain of B or if B
determines the y-span of S.

Our algorithm now actually consists of eight incremental algorithms: The cut
starts four times at the left side of P , implying that B is the larger polygon that
determines the size of S. The other four times the cut starts at the right side of
P and A is the larger polygon. If we start at the left side we initialize with A = ∅
and B = P and grow A and shrink B (therefore also S) while keeping A to the
NW (resp. SW, NE, or SE) of B. We then start with A = P and B = ∅ and grow
B and shrink A (therefore also S) while keeping B to the NW (resp. SW, NE, or
SE) of A. During the run of each algorithm we maintain the contact points on
A and B and a bounding square S whose size corresponds to the x or y-span of
either A or B depending on the constellation we are currently processing. The
algorithms terminate whenever A and B do not fit into S anymore.
There are two types of events our algorithm has to process: (i) the cutting

line passes over a vertex of A or B and (ii) the contact point between A and B
proceeds to a next vertex or edge on A or B. Based on the observations above it
is straightforward to see that each algorithm only needs to process O(n) events,
each at constant cost.
Whenever an algorithm terminates we use the current information on the

contacts between A, B, and S to compute the optimum in-between the last two
events. Finally, the minimum of the minimal square sizes found by the eight
algorithms is the true minimum square size we set out to find.
Now all that remains is to prove the following lemma:

Lemma 1. For a given convex polygon P there exists an optimal vertical cut C
and an optimal translation of A and B that put A and B without intersection
into a square S with side length s and one of the following holds: (a) the x-span
or y-span of B is equal to s and if A is not empty, then it is in contact with B
and with the left or right side of S or (b) the x-span or y-span of A is equal to
s and if B is not empty, then it is in contact with A and with the left or right
side of S.

Proof. (sketch) Assume that an optimal solution is given, where S is the enclos-
ing square with side length s, the pieces are polygons A and B, and the cut is
C. We will transform this solution into one that satisfies the statement in the
lemma, without increasing the side length s of S.



Cutting a Country for Smallest Square Fit 95

Assume first that the angles of the cut edge corners αt and αb of A sum up
to at most π. Then we will show how to transform to case (a) of the lemma.
Otherwise, the angles of the cut edge corners βt and βb of B sum up to at most π
because P is convex. Then it follows by symmetry that we can transform to case
(b). Hence we only need to show the first part, and we assume that αt+αb ≤ π.

Let � be a line that separates the interiors of A and B. First assume that � can
be vertical. We shift the cut edge to make B grow and A shrink simultaneously.
This cannot increase the x-span of A and B, so we can continue until either A
becomes empty and B = P , or the y-span of B becomes s. In both cases we are
done.

B

C

C

A αb

αt

βb

βt

Fig. 3. The three cases of the proof.

Now assume that � cannot be vertical. By symmetry we may assume that A
lies above � and B lies below �, see Figure 3. Again we need to consider two cases,
one where � has positive slope and one where � has negative slope. These cases
are not symmetric. However, in this sketch we will discuss only one. Furthermore,
the case of a horizontal line � follows in exactly the same way, but here it is not
treated explicitly because it increases the complexity of the formulations.
Since B is below and right of �, and A above and left of �, we can assume

that S and B are in contact at both the bottom and right side of S, otherwise
we can move B to make this true. Similarly, we can assume that A is in contact
with the top and left side of S, or we can move A inside S to make this happen.
If A and B can be separated by a vertical line in this new configuration, then
we are done as just shown, so we assume that this is not the case. If A and B
are in contact, then the tangent point can only be the lower endpoint of the
cut edge of A or the upper endpoint of the cut edge of B (see the left two
pictures in Fig. 3), otherwise we obtain a contradiction with the convexity of P .
Furthermore, because of the positive slope of �, the angle assumption on A, and
the fact that A and B come from one convex polygon, we can show that the
highest point of A is the upper endpoint of the cut edge.
The main observation is that we can shift the cut to grow B and shrink

A simultaneously, until the either the x-span or the y-span of B is equal to
s. During this shift, we will not move A, B, or S in horizontal direction, only
vertically. We must show that A and B still fit in S vertically, until the x-span



96 M. van Kreveld and B. Speckmann

or y-span of B is s. Then we can reposition A to satisfy the other criteria of the
lemma.
We next show that the cut can be shifted without forcing the square S to

increase in size. When shifting the cut leftward, A loses a trapezoidal region
bounded from the left and right by vertical sides. Because αb + αt ≤ π, the left
side of the trapezoid is at most as long as the right side. Because of the shift, piece
A can move upward in S with an amount depending on the slope of the edge of
A counterclockwise from the cut edge, and the amount of shifting. This follows
from the observation that the highest point of A must be the upper endpoint
of the cut edge of A. At the same time, B grows, and pushes itself and/or A
upward with respect to the bottom side of S. If A and B were not in contact
yet, they may come in contact. Three possible situations are shown in Figure 3.
Which contacts occur, the slopes of the edges clockwise and counterclockwise
of the cut edge in A (not B!), together with the amount of shifting, determine
the amount with which A and/or B must move upward due to the size increase
of B. Since αb + αt ≤ π, part A can move up at least as much as B need be
moved up to stay inside S. The sum αb + αt can only decrease when the cut
shifts leftward, so we can continue until the x-span or y-span of B is s.

The arguments of the proof when the separating line � has negative slope are
similar and we omit them here. After arriving in the situation where the x-span
or y-span of B is s, either A is empty, or we can move A until it is in contact
with B. ��

Theorem 1. Given a convex polygon P with n vertices, we can determine a
vertical cut C of P into subpolygons A and B, and a non-intersecting placement
of A with respect to B, such that the smallest enclosing square of A and B is
minimized in O(n) time.

3 Cutting a Simple Polygon

Assume we are given a not necessarily convex simple polygon P with n vertices.
Our goal is to find a vertical line segment C that cuts P into two parts A and
B and then to translate A to a position in which A and B do not properly
intersect, such that the smallest enclosing (axis-parallel) square S for A and B
is minimized.
In an optimal solution A and B will be in contact (more precisely, there

is an optimal solution with A and B in contact). Furthermore, we can assume
that a vertex v of A lies on an edge e of B. We first choose v and e in P and
then consider all cuts C that partition P such that v and e are part of different
subpolygons. Consider a vertical decomposition of P : There are a number of
separating trapezoids such that a cut through any of these trapezoids separates
v and e. The separating trapezoids can be linearly ordered such that a cut
through the first one results in the smallest A and largest B and cuts through
the following trapezoids grow A while shrinking B. In Figure 4 the separating
trapezoids are shaded grey and ordered from left to right. For convenience we



Cutting a Country for Smallest Square Fit 97

add the vertices of the trapezoidal decomposition as vertices to (the boundary
of) P . This does not restrict the problem and the number of vertices of P is still
in O(n). The edge e is now an edge of the polygon including the vertices induced
by the trapezoidation, so it can be a subedge of an edge of the original input
polygon (see Fig. 4).

e

v

Fig. 4. A polygon P with v and e chosen; the separating trapezoids are shaded grey.

We first describe only the cases where the edge e of B lies on the boundary
of P and is not the one cut edge of B. Similarly, we assume first that v is not an
endpoint of the cut edge of A and that e is not adjacent to the cut edge of B.
We make these assumptions to explain the general idea and we will show later
how to handle all cases.
All positions with v ∈ A in contact with e ∈ B can be represented by an

interval I of the real line. At each end of I, vertex v coincides with one of
the endpoints of e. For ease of description, we assume B to be stationary and A
translating with respect to B. Since v must be in contact with e, A will translate
along the vector between the two endpoints of the edge e. We are interested in
those positions where A and B are non-intersecting. A and B intersect if and only
if they each have a line segment that properly intersect. In a degenerate case this
may not be true, but we will not consider such cases here. If we consider one line
segment eA of A in translation, then in the general case, eA intersects a (steady)
line segment eB of B along some stretch, but possibly not before and/or not
after it. The positions on interval I where eA and eB intersect are a subinterval
of I. Since this holds for all edges of A and B, there are O(n2) intervals on I
that define in what position of A with respect to B they intersect. We will store
these intervals in a segment tree, and augment every internal node µ with a
boolean Free that indicates whether in the interval Iµ of I, represented by µ,
there is at least one position that is not covered by any of the O(n2) intervals in
the subtree rooted at µ. Since this boolean is only valid for the intervals stored
in the subtree rooted at µ, there may be an interval stored at an ancestor of µ
which makes no position for µ non-covered. The boolean helps to answer queries
with a query interval Iq, to locate the leftmost or rightmost non-covered position
in Iq, in O(log n) time. We will use the term “free” throughout the description
for a placement of A with respect to B so that they do not properly intersect.



98 M. van Kreveld and B. Speckmann

We do not have to store the intervals explicitly at the nodes of the segment
tree. Instead, we store a counter at each node that represents how many intervals
are stored at that node as in a segment tree for stabbing counting queries. The
counts and augmentation by booleans can be maintained under insertion and
deletion of any interval in O(log n) time. The segment tree needs O(n2) storage
because it represents O(n2) intervals.

size of the
smallest
enclosing
square for
v on e
and cut C

I I

fC

IC

Fig. 5. The function fC for a given cut C (left); the patches for all positions on I and
cuts inside a trapezoid (right).

Assuming that the position of the cut C is fixed, let fC be the function that
maps the position of v on e (or, equivalently, a point on I) to the side length of
the smallest enclosing square of A and B in the specified position. The function
fC is defined on every point of I, regardless whether this position is free. Over the
interval I fC is a piecewise linear continuous function consisting of at most five
pieces (see Fig. 5). If there are five pieces, then the first two pieces have negative
slope, the middle piece is horizontal and is the minimum of the function, and
the last two pieces have positive slope. The function fC is easy to compute in
O(n) time. The optimal free placement for A and B with v on e is either some
position on I that realizes the minimum of fC , or the rightmost position on I left
of the minimum, or the leftmost position right of the minimum. Note that with
the help of the segment tree we can determine the optimum placement inside
any query interval Iq in O(log n) time with at most three queries. We query with
the subinterval of Iq that has negative slope to find the rightmost free position,
we query with the subinterval of Iq with constant slope for any free position,
and we query with the subinterval of Iq with positive slope for the leftmost free
position.
Assume next that the cut C jumps from trapezoid boundary to trapezoid

boundary. Assume first that this makes A larger by exactly one trapezoid and
B smaller by that same trapezoid. More generally, it can happen that a large
part of B suddenly goes to A, like the upper left part of P in Figure 4. We can
treat this as a sequence of single trapezoids going from B to A. This may make
A temporarily disconnected, but this will not affect the algorithm. We will not
query the segment tree for a free position until we reach the next possible cut.
When we jump to a next trapezoid boundary A loses its former cut edge, it gains



Cutting a Country for Smallest Square Fit 99

a new cut edge, and it gains two edges from B. Similarly, B loses its former cut
edge and two more edges and gains a new cut edge. In total, four edges change for
each of A and B. These eight edges were involved in O(n) of the O(n2) intervals
on I. To update the segment tree, we perform O(n) insertions and deletions of
intervals. Since the free-information and the counts in the segment tree can be
maintained in O(1) time per node visited, one update takes only O(log n) time.
Then we have the segment tree for the next cut. We can determine the new
function fC and query for the new optimum with three queries. In total, taking
one whole trapezoid from B and adding it onto A takes O(n log n) time.
In general it is the case that the optimum cut and position of v on e does

not occur at a trapezoid boundary, but somewhere in the middle between two
boundaries. We handle this as follows: We consider simultaneously the position
of v on e and the exact position of the cut between two consecutive trapezoid
boundaries. When the cut progresses from one trapezoid boundary to the next,
we could maintain all changes that occur to the O(n2) intervals on I. However,
there can be a cubic number of events (endpoint swaps) between intervals that
change and intervals that do not change – this is too costly to maintain. Instead
we keep changing and non-changing intervals separate in our solution. We repre-
sent the exact position of the cut as a second dimension added to I, which yields
another interval IC , and we consider the rectangular region R = I × IC (see
Fig. 5). Any point in this region represents a position of v on e and a position
of the cut in the trapezoid under consideration. The lower side of R corresponds
to the situation where the cut trapezoid is completely part of B and the upper
side corresponds to the situation where the cut trapezoid is completely part of
A. The O(n2) intervals resulting from one edge of A and one edge of B now
become regions of one of two types, see Figure 6. These regions show where

IC IC

I I

Fig. 6. The rectangle R = I ×IC : the rectangular forbidden regions (left) and all other
forbidden regions (right).

the edges intersect, so they are forbidden regions for the free placement of A
with respect to B. If edges eA ∈ A and eB ∈ B do not change when the cut is
moved in the trapezoid, then we get a rectangular region i × IC in R, where i
was the original interval we got for eA and eB . There are O(n2) such rectangles.
All pairs of edges that involve the cut or one of the edges that go from B to



100 M. van Kreveld and B. Speckmann

A when the cut progresses, define O(n) differently shaped regions. The regions
involving an edge adjacent to the cut edge of A are triangular or quadrilateral,
and more specifically, are the region vertically above some line segment inside
R. This line segment may have one endpoint on the upper side of R, which de-
termines whether it is triangular or quadrilateral of shape. Similarly, any region
involving an edge adjacent to the cut edge of B is the region vertically below a
line segment.
The regions involving the cut edge of A or B are also simple polygonal

shapes. However, their shape is such that a vertical line could intersect them
twice inside R and therefore the complexity of the boundary of the forbidden
regions inside R may be quadratic, even if we do not consider the rectangles.
Due to the complexity of these regions the solution we are about to describe
would not be efficient, so we need to represent them differently. We make use of
the following simple geometric observation (see Fig. 7):

extra edge
of B

extra edge
of A

A B

v e

cut

Fig. 7. Vertex of B inside the cut trapezoid of A.

Observation 3 If polygons A and B intersect and the only edge of A involved
in the insection is the cut edge of A, then there must be a vertex of B inside A.
Furthermore, if the left extreme position of the cut edge is considered a fixed edge
of A and this edge also does not intersect any edge of B, then the cut trapezoid
of A must contain a vertex of B.

This observation shows that the only other forbidden regions we must add
are the ones where the cut trapezoid of A contains a vertex of B or the cut
trapezoid of B contains a vertex of A. This is true if we consider the left side
of the cut trapezoid of A to be a fixed edge of A and the right edge of the
cut trapezoid to be a fixed edge of B. The extra edge of A was actually used
when we considered the situation at the trapezoid boundary just before. So the
corresponding intervals are already in the segment tree. For the extra edge of B
we insert O(n) intervals in the segment tree.



Cutting a Country for Smallest Square Fit 101

The new forbidden regions that spring from this observation are the pentag-
onal regions vertically above or below two adjacent line segments. Summarizing,
we have three types of forbidden regions inside R:

1. O(n2) vertical rectangles inside R, that cross R completely in the vertical
direction. These are represented in the segment tree.

2. O(n) regions vertically above a line segment inside R.
3. O(n) regions vertically below a line segment inside R.

We compute the lower envelope of the regions of the second type and the upper
envelope of the regions of the third type. Only the regions in-between can contain
placements for A and B and a choice of the cut, such that A and B do not
intersect. We combine the envelopes by a left-to-right scan to compute the regions
in-between. These regions are bounded by at most O(nα(n)) line segments and
can be computed in O(n log n) time [4].
The function f that gives the side length of the smallest enclosing square

as a function of a point in R (a position of v on e and position of the cut) is
now a piecewise linear bivariate function (see Fig. 5). If the cut is fixed, then
the function fC has the shape we noted before. This holds for every cut. The
function f may have up to fifteen patches. Two horizontal lines partition the
rectangle R into three slabs, the middle slab is partitioned by four vertical lines,
and the other two slabs are partitioned by four diagonal lines. The twelve lines
partitioning the three slabs connect to each other. The function f gives the side
length of the enclosing square regardless of whether A and B intersect.
We now overlay the O(1) patch boundaries of f with the O(nα(n)) line

segments of the region in-between the envelopes. We take the collection S of all
O(nα(n)) edges we have in this arrangement, take their x-extents, and query
in the segment tree to find both the leftmost and the rightmost free position in
the query interval. We use the function f to determine the size of the smallest
enclosing square for each answer in O(1) time. In total, the queries to find
candidate solutions take O(nα(n) log n) time. We select the smallest answer,
which is the best solution for a given vertex v in contact with a given edge e and
a given cut trapezoid.

Lemma 2. The optimal placement and cut for a given v, e, and cut trapezoid
is a leftmost or rightmost free placement on a segment of S.

Proof. By construction, any segment of S lies inside of only one patch of f or
is part of a patch boundary. Over each patch a linear function defines the side
length of the smallest enclosing square. Obviously, we need a free placement so
that A and B do not intersect. The lemma follows. ��
We already described how to update the segment tree so that it becomes valid
for the next separating trapezoid. The update requires O(n log n) time in total
and since we go through at most O(n) trapezoids, the total update time be-
comes O(n2 log n). The initial costs for constructing the segment tree are also
O(n2 log n), which brings the total cost for one edge e, one vertex v, and all
cuts that separate them to O(n2α(n) log n). Concluding, if the optimal cut of



102 M. van Kreveld and B. Speckmann

polygon P and position of the parts A and B has some vertex-edge contact not
at the cut edge, then we can determine it in O(n4α(n) log n) time.

The remaining issue is a situation where the optimal cut and position has a
contact between A and B that involves an edge or vertex of the cut edge of A
or B. A careful case analysis shows that this situation can be handled without
affecting the running time of our algorithm asymptotically. Due to the limited
amount of space available for this abstract we omit the details of this analysis.
However, they can be found in the full version of the paper.

Theorem 2. Given a simple polygon P with n vertices, we can determine a
vertical cut C of P into subpolygons A and B, and a non-intersecting placement
of A with respect to B, such that the smallest enclosing square of A and B is
minimized in O(n4α(n) log n) time and O(n2) space.

4 Open Problems

The problem of cutting a polygon into two and rearranging the parts gives rise
to various interesting and very difficult problems. Our algorithm breaks down if
we allow straight line cuts that need not to be horizontal or vertical. An even
more general problem arises if we allow several line segments or even any curve
as the cut and still wish to rearrange the parts optimally to fit inside a square.
It might also be of interest to study the problem if we do not restrict ourselves
to translations but also allow rotations while rearranging the parts.

References

1. H. Alt and F. Hurtado. Packing convex polygons into rectangular boxes. In Discrete
and Computational Geometry – Japanese Conference, JCDCG 2000, number 2098
in Lect. Notes in Comp. Science, pages 67–80. Springer, 2001.

2. K. Daniels and V. J. Milenkovic. Multiple translational containment, part i: An
approximate algorithm. Algorithmica, 19(1–2):148–182, September 1997.

3. Greg Frederickson. Dissections: Plane and Fancy. Cambridge University Press,
1997.

4. J. Hershberger. Finding the upper envelope of n line segments in O(n logn) time.
Inform. Process. Lett., 33:169–174, 1989.

5. Michael Hoffmann. Covering polygons with few rectangles. In Abstracts 17th
European Workshop Comput. Geom., pages 39–42. Freie Universität Berlin, 2001.

6. V. Milenkovic. Translational polygon containment and minimal enclosure using
linear programming based restriction. In Proc. 28th Annu. ACM Sympos. Theory
Comput., pages 109–118, 1996.

7. Victor J. Milenkovic. Multiple translational containment, part ii: Exact algorithm.
Algorithmica, 19(1–2):183–218, September 1997.


	Introduction
	Cutting a Convex Polygon
	Cutting a Simple Polygon
	Open Problems
	References

