Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk
Disjoint-set data structure (Union-Find)

Problem:
• Maintain a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, \ldots, S_r\}$.
• Each set S_i has one element distinguished as the representative element, $rep[S_i]$.
• Must support 3 operations:
 • **MAKE-SET**(x): adds new set $\{x\}$ to S with $rep[\{x\}] = x$ (for any $x \notin S_i$ for all i)
 • **UNION**(x, y): replaces sets S_x, S_y with $S_x \cup S_y$ in S (for any x, y in distinct sets S_x, S_y)
 • **FIND-SET**(x): returns representative $rep[S_x]$ of set S_x containing element x
Union-Find Example

The representative is underlined

\[
\begin{align*}
\text{MAKE-SET}(2) & \quad S = \{\}\quad S = \{\{2\}\} \\
\text{MAKE-SET}(3) & \quad S = \{\{2\}, \{3\}\} \\
\text{MAKE-SET}(4) & \quad S = \{\{2\}, \{3\}, \{4\}\} \\
\text{FIND-SET}(4) = 4 & \quad S = \{\{2, 4\}, \{3\}\} \\
\text{UNION}(2, 4) & \quad S = \{\{2, 4\}, \{3\}\} \\
\text{FIND-SET}(4) = 2 & \quad S = \{\{2, 4\}, \{3\}, \{5\}\} \\
\text{MAKE-SET}(5) & \quad S = \{\{2, 4\}, \{3\}, \{5\}\} \\
\text{UNION}(4, 5) & \quad S = \{\{2, 4, 5\}, \{3\}\}
\end{align*}
\]
Application: Dynamic connectivity

Suppose a graph is given to us incrementally by

- **ADD-VERTEX**(ν)
- **ADD-EDGE**(u, ν)

and we want to support connectivity queries:

- **CONNECTED**(u, ν):
 Are u and ν in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.
Application: Dynamic connectivity

Sets of vertices represent connected components. Suppose a graph is given to us incrementally by

- **Add-Vertex**(v) : **Make-Set**(v)
- **Add-Edge**(u, v) : if not **Connected**(u, v) then **Union**(u, v)

and we want to support connectivity queries:

- **Connected**(u, v): **Find-Set**(u) = **Find-Set**(v)
 Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.
Disjoint-set data structure (Union-Find) II

• In all operations pointers to the elements x, y in the data structure are given.

• Hence, we do not need to first search for the element in the data structure.

• Let n denote the overall number of elements (equivalently, the number of MAKE-SET operations).
Simple linked-list solution

Store each set \(S_i = \{x_1, x_2, \ldots, x_k\} \) as an (unordered) doubly linked list. Define representative element \(rep[S_i] \) to be the front of the list, \(x_1 \).

\[
S_i: \quad x_1 \quad x_2 \quad \cdots \quad x_k
\]

\(rep[S_i] \)

- \(\Theta(1) \) • **MAKE-SET** \((x)\) initializes \(x \) as a lone node.
- \(\Theta(n) \) • **FIND-SET** \((x)\) walks left in the list containing \(x \) until it reaches the front of the list.
- \(\Theta(n) \) • **UNION** \((x, y)\) calls **FIND-SET** on \(y \), finds the last element of list \(x \), and concatenates both lists, leaving \(rep \) as **FIND-SET**\([x]\).
Simple balanced-tree solution

Store each set $S_i = \{x_1, x_2, \ldots, x_k\}$ as a balanced tree (ignoring keys). Define representative element $rep[S_i]$ to be the root of the tree.

- **MAKE-SET(x)** initializes x as a lone node. $\Theta(1)$
- **FIND-SET(x)** walks up the tree containing x until reaching root. $\Theta(\log n)$
- **UNION(x, y)** calls **FIND-SET** on y, finds a leaf of x and concatenates both trees, changing rep. of y. $\Theta(\log n)$

How?

$S_i = \{x_1, x_2, x_3, x_4, x_5\}$
Plan of attack

• We will build a simple disjoint-union data structure that, in an *amortized sense*, performs significantly better than $\Theta(\log n)$ per op., even better than $\Theta(\log \log n)$, $\Theta(\log \log \log n)$, ..., but not quite $\Theta(1)$.

• To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\log n)$ amortized solution. Together, the two tricks yield a much better solution.

• First trick arises in an augmented linked list. Second trick arises in a tree structure.
Augmented linked-list solution

Store $S_i = \{x_1, x_2, \ldots, x_k\}$ as unordered doubly linked list.

Augmentation: Each element x_j also stores pointer $\text{rep}[x_j]$ to $\text{rep}[S_i]$ (which is the front of the list, x_1).

- $\text{FIND-SET}(x)$ returns $\text{rep}[x]$. $\Theta(1)$
- $\text{UNION}(x, y)$ concatenates lists containing x and y and updates the rep pointers for all elements in the list containing y. $\Theta(n)$
Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$.

$\text{UNION}(x, y)$

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.

$S_x :$

\begin{align*}
\cdots & \quad x_1 \quad \cdots \\
& \quad rep[S_x] \quad \cdots
\end{align*}

$S_y :$

\begin{align*}
\cdots & \quad y_1 \quad \cdots \\
& \quad rep[S_y] \quad \cdots
\end{align*}
Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$.

UNION(x, y)

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.

$S_x \cup S_y$:

```
<table>
<thead>
<tr>
<th>x_1</th>
<th>rep[S_x]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
<th>rep[S_y]</th>
</tr>
</thead>
</table>
```
Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$.

UNION(x, y)

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.

$S_x \cup S_y$

![Diagram showing augmented linked-list solution with elements x_1, x_2, y_1, y_2, y_3 and $rep[S_x \cup S_y]$]
Alternative concatenation

\textsc{Union}(x, y) \textit{could instead}

- concatenate the lists containing \(y \) and \(x \), and
- update the \textit{rep} pointers for all elements in the list containing \(x \).
Alternative concatenation

\textsc{Union}(x, y) could instead

- concatenate the lists containing \textit{y} and \textit{x}, and
- update the \textit{rep} pointers for all elements in the list containing \textit{x}.

\begin{align*}
S_x \cup S_y : \\
x_1 &\leftarrow rep[S_y] \\
y_1 &\leftarrow \text{rep} \\
y_2 &\leftarrow \text{rep} \\
y_3 &\text{rep} \\
x_2 &\leftarrow \text{rep}[S_x]
\end{align*}
Alternative concatenation

\textsc{Union}(x, y) \text{ could instead}
\begin{itemize}
\item concatenate the lists containing y and x, and
\item update the \textit{rep} pointers for all elements in the list containing x.
\end{itemize}
Trick 1: Smaller into larger
(weighted-union heuristic)

To save work, concatenate the smaller list onto the end of the larger list. Cost = Θ(length of smaller list).

Augment list to store its **weight** (# elements).

- Let n denote the overall number of elements (equivalently, the number of **MAKE-SET** operations).
- Let m denote the total number of operations.
- Let f denote the number of **FIND-SET** operations.

Theorem: Cost of all **UNION**’s is $O(n \log n)$.

Corollary: Total cost is $O(m + n \log n)$.
Analysis of Trick 1
(weighted-union heuristic)

Theorem: Total cost of UNION’s is $O(n \log n)$.

Proof. • Monitor an element x and set S_x containing it.
• After initial MAKE-SET(x), $\text{weight}[S_x] = 1$.
• Each time S_x is united with S_y:
 • if $\text{weight}[S_y] \geq \text{weight}[S_x]$:
 – pay 1 to update $\text{rep}[x]$, and
 – $\text{weight}[S_x]$ at least doubles (increases by $\text{weight}[S_y]$).
 • if $\text{weight}[S_y] < \text{weight}[S_x]$:
 – pay nothing, and
 – $\text{weight}[S_x]$ only increases.
Thus pay $\leq \log n$ for x.
Disjoint set forest: Representing sets as trees

Store each set $S_i = \{x_1, x_2, \ldots, x_k\}$ as an unordered, potentially unbalanced, not necessarily binary tree, storing only parent pointers. $rep[S_i]$ is the tree root.

- **MAKE-SET(x)** initializes x as a lone node. $- \Theta(1)$
- **FIND-SET(x)** walks up the tree containing x until it reaches the root. $- \Theta(depth[x])$
- **UNION(x, y)** calls **FIND-SET** twice and concatenates the trees containing x and y… $- \Theta(depth[x])$
Trick 1 adapted to trees

- **UNION**\((x, y)\) can use a simple concatenation strategy: Make root **FIND-SET**\((y)\) a child of root **FIND-SET**\((x)\).
 \[\Rightarrow \text{FIND-SET}(y) = \text{FIND-SET}(x). \]

- Adapt Trick 1 to this context:

 Union-by-weight:
 Merge tree with smaller weight into tree with larger weight.

- Variant of Trick 1 (see book):

 Union-by-rank:
 rank of a tree = its height
Trick 1 adapted to trees (union-by-weight)

• Height of tree is logarithmic in weight, because:
 • Induction on \(n \)
 • Height of a tree \(T \) is determined by the two subtrees \(T_1, T_2 \) that \(T \) has been united from.
 • Inductively the heights of \(T_1, T_2 \) are the logs of their weights.
 • If \(T_1 \) and \(T_2 \) have different heights:
 \[
 \text{height}(T) = \max(\text{height}(T_1), \text{height}(T_2)) = \max(\log \text{weight}(T_1), \log \text{weight}(T_2)) < \log \text{weight}(T)
 \]
 • If \(T_1 \) and \(T_2 \) have the same heights:
 (Assume \(2 \leq \text{weight}(T_1) < \text{weight}(T_2) \))
 \[
 \text{height}(T) = \text{height}(T_1) + 1 = \log (2 \times \text{weight}(T_1)) \leq \log \text{weight}(T)
 \]
• Thus the total cost of any \(m \) operations is \(O(m \log n) \).
Trick 2: Path compression

When we execute a `FIND-SET` operation and walk up a path \(p \) to the root, we know the representative for all the nodes on path \(p \).

Path compression makes all of those nodes direct children of the root.

Cost of `FIND-SET(x)` is still \(\Theta(depth[x]) \).
Trick 2: Path compression

When we execute a \texttt{FIND-SET} operation and walk up a path \textit{p} to the root, we know the representative for all the nodes on path \textit{p}.

\textit{Path compression} makes all of those nodes direct children of the root.

Cost of \texttt{FIND-SET}(x) is still $\Theta(\text{depth}[x])$.

\texttt{FIND-SET}(y_2)
Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path \(p \) to the root, we know the representative for all the nodes on path \(p \).

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(\(x \)) is still \(\Theta(\text{depth}[x]) \).

\[
\text{FIND-SET}(y_2)
\]
Trick 2: Path compression

• Note that UNION(x,y) first calls FIND-SET(x) and FIND-SET(y). Therefore path compression also affects UNION operations.
Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET’s is $O(m \log n)$.

Proof: By amortization. Omitted.
Ackermann’s function A, and its “inverse” α

Define $A_k(j) = \left\{ \begin{array}{ll}
 j + 1 & \text{if } k = 0, \\
 A_{k-1}^{(j+1)}(j) & \text{if } k \geq 1.
\end{array} \right.$ – iterate $j+1$ times

$A_0(j) = j + 1$

$A_1(j) \sim 2^j$

$A_2(j) \sim 2^j 2^j > 2^j$

$A_3(j) > 2^{2^{2^j}}$

$A_4(j)$ is a lot bigger.

Define $\alpha(n) = \min \{ k : A_k(1) \geq n \} \leq 4$ for practical n.

$A_0(1) = 2$

$A_1(1) = 3$

$A_2(1) = 7$

$A_3(1) = 2047$

$A_4(1) > 2^{2^{2^{2^{2047}}}}$
Analysis of Tricks 1 + 2 for disjoint-set forests

Theorem: In general, total cost is $O(m \, \alpha(n))$.

(long, tricky proof – see Section 21.4 of CLRS)