1. Homework
Due 1/22/09 before class

1. Code snippets (4 points)
For each of the two code snippets below give their Θ-runtime depending on \(n \).
Justify your answers.

(a) (3 points)
\[
\text{for} (i=n; \ i>=1; \ i=i-3) \{
\text{for} (j=n; \ j>=1; \ j=j/3) \{
\text{for} (k=3*n; \ k>=1; \ k--) \{
\text{print(" ");}
\}
\}
\}
\]

(b) (1 point)
\[
\text{for} (i=2; \ i<=n; \ i=i*i) \{
\text{print(" ");}
\}
\]

2. \(O \) and \(\Omega \) (4 points)
Prove the following, using the definitions of \(O \) and \(\Omega \):

- (2 points) \(5n^3 + 3n + 2 \in O(n^3) \)
- (2 points) \(5n^3 + 3n + 2 \not\in \Omega(n^4) \)

3. Selection sort (7 points)
Consider sorting \(n \) numbers stored in array \(A \) by first finding the smallest element of \(A \) and exchanging it with the element in \(A[1] \). Then find the second smallest element of \(A \), and exchange it with \(A[2] \). Continue in this manner for the first \(n-1 \) elements of \(A \). This algorithm is known as selection sort.

- (2 points) Write pseudocode for this algorithm.
- (2 points) What loop invariant does this algorithm maintain? Argue (informally) why this loop invariant will help prove the correctness of the algorithm.
- (1 point) Why does the algorithm need to run for only the first \(n-1 \) elements, rather than for all \(n \) elements?
- (2 points) Give best-case and worst-case running times (and example inputs attaining these runtimes) of selection sort in Θ-notation.

Flip over to back page \[\rightarrow\]
4. **Big-Oh ranking (14 points)**

Rank the following functions by order of growth, i.e., find an arrangement f_1, f_2, \ldots of the functions satisfying $f_1 \in O(f_2)$, $f_2 \in O(f_3)$, \ldots. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_i, f_j that are adjacent in your ordering, prove shortly why $f_i \in O(f_j)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

\[3n^3 + 4n^4, \quad n \log^2 n, \quad n^3, \quad \log \log n, \quad 2^n, \quad \log^2 n, \quad \sqrt{n}, \quad \sqrt{n}, \quad \log n, \quad n, \quad n \log n, \quad 2^n+2, \quad 4^n, \quad \log \sqrt{n}\]

As a reminder: $\log^2 n = (\log n)^2$ and $\log \log n = \log(\log n)$. Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l’Hôpital which states that

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}
\]

if the limits exist; where $f'(n)$ and $g'(n)$ are the derivatives of f and g, respectively.