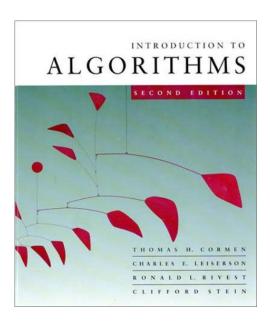


CS 5633 -- Spring 2008



Range Trees

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

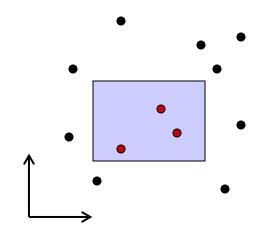
Orthogonal range searching

Input: *n* points in *d* dimensions

• E.g., representing a database of *n* records each with *d* numeric fields

Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.



Orthogonal range searching

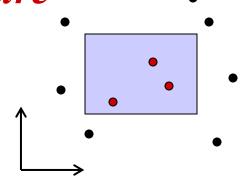
Input: *n* points in *d* dimensions

Query: Axis-aligned box (in 2D, a rectangle)

Report on the points inside the box

Goal: Preprocess points into a data structure to support fast queries

- Primary goal: Static data structure
- In 1D, we will also obtain a dynamic data structure supporting insert and delete



1D range searching

In 1D, the query is an interval:

First solution:

- Sort the points and store them in an array
 - Solve query by binary search on endpoints.
 - Obtain a static structure that can list k answers in a query in $O(k + \log n)$ time.

Goal: Obtain a dynamic structure that can list k answers in a query in $O(k + \log n)$ time.

1D range searching

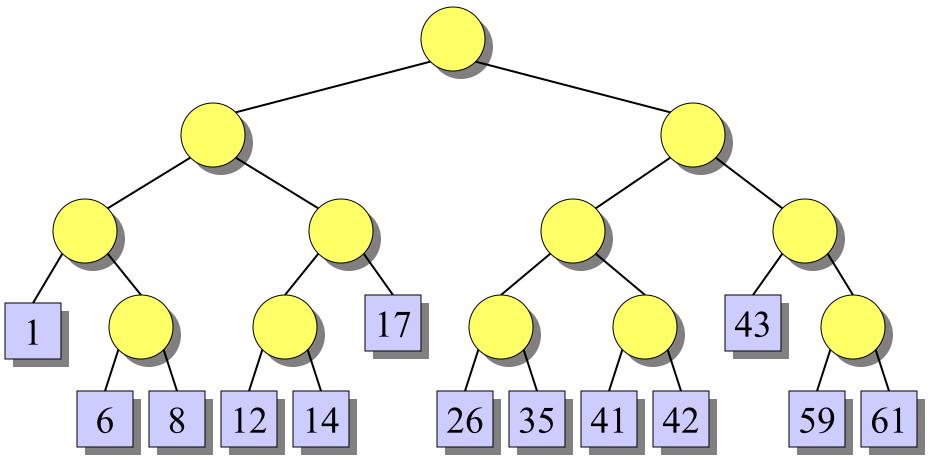
In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node x stores in key[x] the maximum key of any leaf in the left subtree of x.

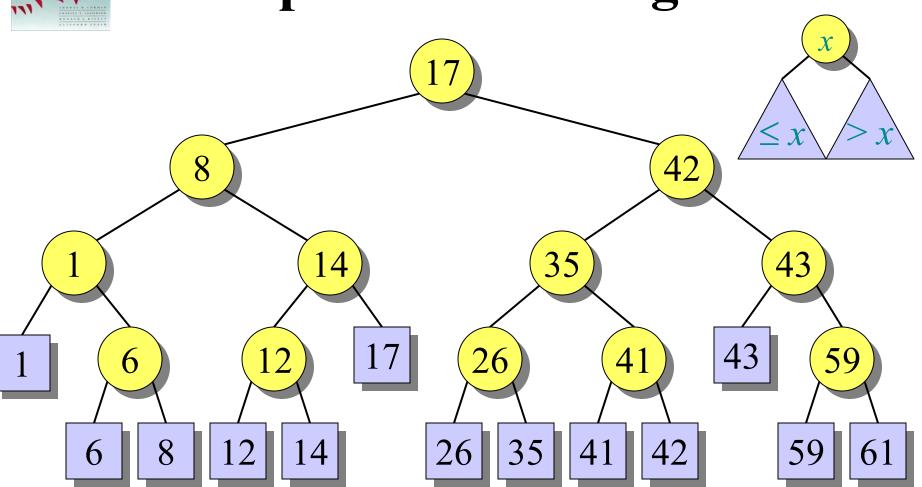


Example of a 1D range tree

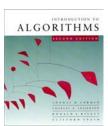


key[x] is the maximum key of any leaf in the left subtree of x.

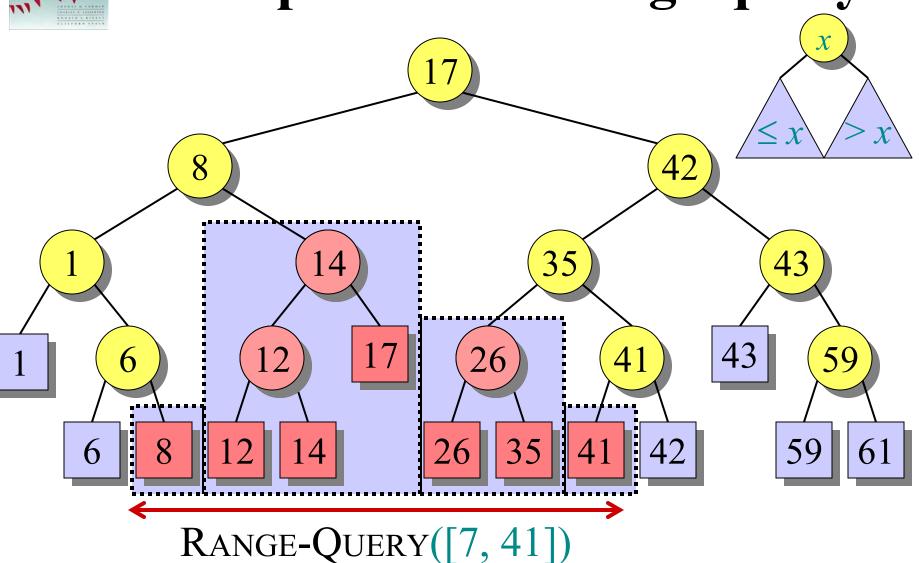
Example of a 1D range tree



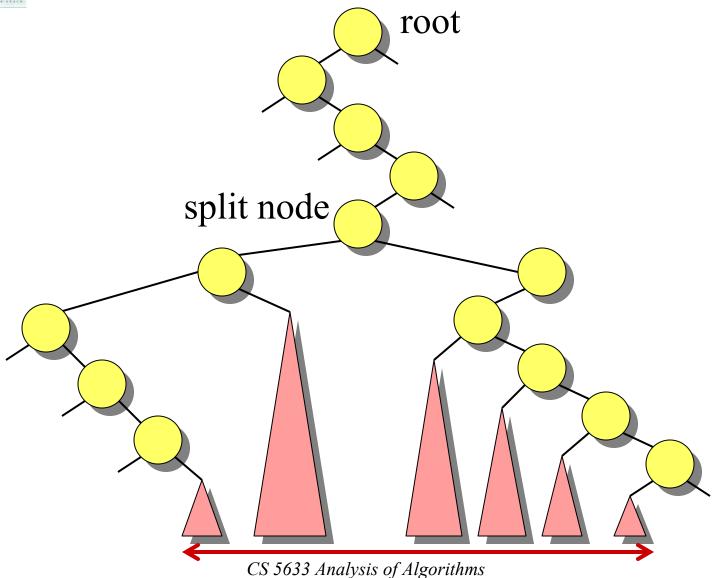
key[x] is the maximum key of any leaf in the left subtree of x.



Example of a 1D range query



General 1D range query



Pseudocode, part 1: Find the split node

```
1D-RANGE-QUERY(T, [x_1, x_2])

w \leftarrow \text{root}[T]

while w is not a leaf and (x_2 \le key[w] \text{ or } key[w] < x_1)

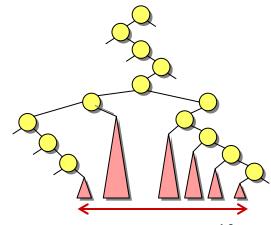
do \text{ if } x_2 \le key[w]

then \ w \leftarrow left[w]

else \ w \leftarrow right[w]

// w is now the split node

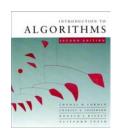
[traverse left and right from w and report relevant subtrees]
```





Pseudocode, part 2: Traverse left and right from split node

```
1D-RANGE-QUERY(T, [x_1, x_2])
    [find the split node]
    // w is now the split node
    if w is a leaf
    then output the leaf w if x_1 \le key[w] \le x_2
                                                         // Left traversal
     else v \leftarrow left[w]
          while \nu is not a leaf
             do if x_1 \le key[v]
                 then output the subtree rooted at right[v]
                        v \leftarrow left[v]
                 else v \leftarrow right[v]
          output the leaf v if x_1 \le key[v] \le x_2
           [symmetrically for right traversal]
```



Analysis of 1D-Range-Query

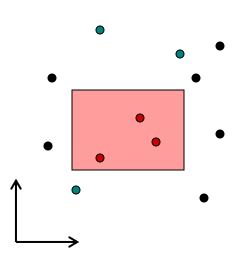
Query time: Answer to range query represented by $O(\log n)$ subtrees found in $O(\log n)$ time. Thus:

- Can test for points in interval in $O(\log n)$ time.
- Can report all k points in interval in $O(k + \log n)$ time.
- Can count points in interval in O(log n) time (exercise)

Space: O(n)

Preprocessing time: $O(n \log n)$

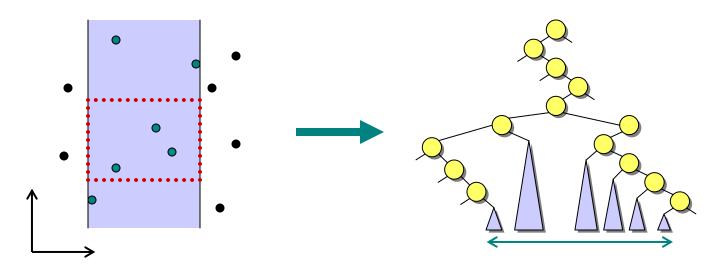
2D range trees



2D range trees

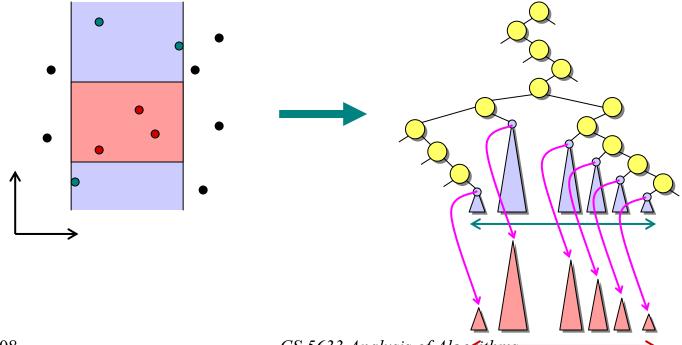
Store a *primary* 1D range tree for all the points based on *x*-coordinate.

Thus in $O(\log n)$ time we can find $O(\log n)$ subtrees representing the points with proper x-coordinate. How to restrict to points with proper y-coordinate?



2D range trees

Idea: In primary 1D range tree of *x*-coordinate, every node stores a *secondary* 1D range tree based on *y*-coordinate for all points in the subtree of the node. Recursively search within each.



Analysis of 2D range trees

Query time: In $O(\log^2 n) = O((\log n)^2)$ time, we can represent answer to range query by $O(\log^2 n)$ subtrees. Total cost for reporting k points: $O(k + (\log n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \log n)$.

Preprocessing time: $O(n \log n)$

d-dimensional range trees

Each node of the secondary *y*-structure stores a tertiary *z*-structure representing the points in the subtree rooted at the node, etc.

Query time: $O(k + \log^d n)$ to report k points.

Space: $O(n \log^{d-1} n)$

Preprocessing time: $O(n \log^{d-1} n)$

Best data structure to date:

Query time: $O(k + \log^{d-1} n)$ to report k points.

Space: O($n (\log n / \log \log n)^{d-1}$)

Preprocessing time: $O(n \log^{d-1} n)$