
1

CS 3343 Analysis of Algorithms 13/5/09

CS 3343 -- Spring 2009

Red-black trees
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 3343 Analysis of Algorithms 23/5/09

Search Trees

• A binary search tree is a binary tree. Each node stores
a key. The tree fulfills the binary search tree property:

For every node x holds:
• y≤ x , for all y in the subtree left of x
• x < y, for all y in the subtree right of x

88 1515

1010

1818

2222

33

77

1212 1717

CS 3343 Analysis of Algorithms 33/5/09

Search Trees

Different variants of search trees:

• Balanced search trees (guarantee height of log n
for n elements)

• k-ary search trees (such as B-trees, 2-3-4-trees)

• Search trees that store the keys
only in the leaves, and store
additional split-values in the
internal nodes

88 1515

1010

1818

2222

33

77

1212 1717

CS 3343 Analysis of Algorithms 43/5/09

ADT Dictionary / Dynamic Set
Abstract data type (ADT) Dictionary
(also called Dynamic Set):
A data structure which supports operations
• Insert
• Delete
• Find
Using balanced binary search trees we can
implement a dictionary data structure such that
each operation takes O(log n) time.

88 1515
1010

1818

2222
33

77

1212 1717

2

CS 3343 Analysis of Algorithms 53/5/09

Balanced search trees
Balanced search tree: A search-tree data
structure for which a height of O(log n) is
guaranteed when implementing a dynamic
set of n items.

Examples:

• AVL trees
• 2-3 trees
• 2-3-4 trees
• B-trees
• Red-black trees

CS 3343 Analysis of Algorithms 63/5/09

Red-black trees
This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x,

to a descendant leaf have the same number of
black nodes = black-height(x).

CS 3343 Analysis of Algorithms 73/5/09

Example of a red-black tree

h = 4

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

CS 3343 Analysis of Algorithms 83/5/09

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

1. Every node is either red or black.

3

CS 3343 Analysis of Algorithms 93/5/09

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

2., 3. The root and leaves (NIL’s) are black.

CS 3343 Analysis of Algorithms 103/5/09

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

4. If a node is red, then both its children are
black.

CS 3343 Analysis of Algorithms 113/5/09

Example of a red-black tree

5. All simple paths from any node x, excluding
x, to a descendant leaf have the same
number of black nodes = black-height(x).

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

bh = 2

bh = 1

bh = 1

bh = 2

bh = 0

CS 3343 Analysis of Algorithms 123/5/09

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

4

CS 3343 Analysis of Algorithms 133/5/09

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 3343 Analysis of Algorithms 143/5/09

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 3343 Analysis of Algorithms 153/5/09

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 3343 Analysis of Algorithms 163/5/09

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

5

CS 3343 Analysis of Algorithms 173/5/09

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)

• This process produces a tree in which each node
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h′ of leaves.

INTUITION:
• Merge red nodes

into their black
parents.

h′

CS 3343 Analysis of Algorithms 183/5/09

Proof (continued)

h′

h

• We have
h′ ≥ h/2, since
at most half
the vertices on any
path are red.

• The number of leaves
in each tree is n + 1
⇒ n + 1 ≥ 2h'

⇒ log(n + 1) ≥ h' ≥ h/2
⇒ h ≤ 2 log(n + 1).

CS 3343 Analysis of Algorithms 193/5/09

Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(log n) time on a red-black
tree with n nodes.

88 1111

1010
1818

2626

2222
33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL
CS 3343 Analysis of Algorithms 203/5/09

Modifying operations

The operations INSERT and DELETE cause
modifications to the red-black tree:
1. the operation itself,
2. color changes,
3. restructuring the links of the tree

via “rotations”.

6

CS 3343 Analysis of Algorithms 213/5/09

Rotations

AA
BB

αα ββ
γγ

RIGHT-ROTATE(B)

BB
AA

γγββ
αα

LEFT-ROTATE(A)

• Rotations maintain the inorder ordering of keys:
a ∈ α, b ∈ β, c ∈ γ ⇒ a ≤ A ≤ b ≤ B ≤ c.

• Rotations maintain the binary search tree property
• A rotation can be performed in O(1) time.

CS 3343 Analysis of Algorithms 223/5/09

Red-black trees
This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x,

to a descendant leaf have the same number of
black nodes = black-height(x).

CS 3343 Analysis of Algorithms 233/5/09

Insertion into a red-black tree

1515

Example:
• Insert x =15.

88 1111

1010

1818

2626

2222

77

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 3343 Analysis of Algorithms 243/5/09

Insertion into a red-black tree

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
88 1111

1010

1818

2626

2222

77

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

7

CS 3343 Analysis of Algorithms 253/5/09

Insertion into a red-black tree

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
88 1111

1010

1818

2626

2222

77

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 3343 Analysis of Algorithms 263/5/09

Insertion into a red-black tree

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 3343 Analysis of Algorithms 273/5/09

Insertion into a red-black tree

88

1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 3343 Analysis of Algorithms 283/5/09

Insertion into a red-black tree

88

1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7)

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

8

CS 3343 Analysis of Algorithms 293/5/09

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7)

33

CS 3343 Analysis of Algorithms 303/5/09

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33

CS 3343 Analysis of Algorithms 313/5/09

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33

CS 3343 Analysis of Algorithms 323/5/09

Pseudocode
RB-INSERT(T, x)

TREE-INSERT(T, x)
color[x] ← RED ⊳ only RB property 4 can be violated
while x ≠ root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]
then y ← right[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then 〈Case 1〉
else if x = right[p[x]]

then 〈Case 2〉 ⊳ Case 2 falls into Case 3
〈Case 3〉

else 〈“then” clause with “left” and “right” swapped〉
color[root[T]] ← BLACK

9

CS 3343 Analysis of Algorithms 333/5/09

Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.

CS 3343 Analysis of Algorithms 343/5/09

Case 1

BB

CC

DDAA

x
y

(Or, A’s children are swapped.)

BB

CC

DDAA

new x

Push C’s black onto A
and D, and recurse,
since C’s parent may be
red.

Recolor

p[x] = left[p[p[x]]
y = right[p[p[x]]
color[y] = RED

Recurse

CS 3343 Analysis of Algorithms 353/5/09

Case 2

BB

CC

AA

x

y
LEFT-ROTATE(A)

AA

CC

BB

x

y

Transform to Case 3.
p[x] = left[p[p[x]]
y = right[p[p[x]]

x = right[p[x]]
color[y] = BLACK

CS 3343 Analysis of Algorithms 363/5/09

RIGHT-ROTATE(C)
(and recolor)

Case 3

AA

CC

BB

x

y
AA

BB

CC

Done! No more
violations of RB
property 4 are
possible.

p[x] = left[p[p[x]]
y = right[p[p[x]]

x = left[p[x]]
color[y] = BLACK

10

CS 3343 Analysis of Algorithms 373/5/09

Analysis

• Go up the tree performing Case 1, which only
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(log n) with O(1) rotations.
RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see
textbook).

CS 3343 Analysis of Algorithms 383/5/09

Pseudocode (part II)
else 〈“then” clause with “left” and “right” swapped〉
⊳ p[x] = right[p[p[x]]
then y ← left[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then 〈Case 1’〉
else if x = left[p[x]]

then 〈Case 2’〉 ⊳ Case 2’ falls into Case 3’
〈Case 3’〉

color[root[T]] ← BLACK

CS 3343 Analysis of Algorithms 393/5/09

Case 1’

CC

y

(Or, A’s children are swapped.)

Recolor

p[x] = right[p[p[x]]
y = left[p[p[x]]
color[y] = RED

BB

AA

x
DD

Push C’s black onto A
and D, and recurse,
since C’s parent may be
red.

new xCC

y

BB

AA

x
DD

Recurse

CS 3343 Analysis of Algorithms 403/5/09

Case 2’

CC RIGHT-ROTATE(A)

p[x] = right[p[p[x]]
y = left[p[p[x]]

x = left[p[x]]
color[y] = BLACK

AAy

BBx

Transform to Case 3’.

CC

AA

y BB
x

11

CS 3343 Analysis of Algorithms 413/5/09

Case 3’

LEFT-ROTATE(C)
(and recolor)

CC

BB

AA

Done! No more
violations of RB
property 4 are
possible.

p[x] = right[p[p[x]]
y = left[p[p[x]]

x = right[p[x]]
color[y] = BLACK

CC

AA

y BB
x

