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CS 3343 -- Spring 2009

Red-black trees
Carola Wenk

Slides courtesy of Charles Leiserson with small 
changes by Carola Wenk
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Search Trees

• A binary search tree is a binary tree. Each node stores 
a key. The tree fulfills the binary search tree property:

For every node x holds: 
• y≤ x , for all y in the subtree left of x
• x < y, for all y in the subtree right of x

88 1515

1010

1818

2222

33

77

1212 1717

CS 3343 Analysis of Algorithms 33/5/09

Search Trees

Different variants of search trees:

• Balanced search trees (guarantee height of log n
for n elements)

• k-ary search trees (such as B-trees, 2-3-4-trees)

• Search trees that store the keys 
only in the leaves, and store 
additional split-values in the 
internal nodes
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ADT Dictionary / Dynamic Set
Abstract data type (ADT) Dictionary 
(also called Dynamic Set):
A data structure which supports operations
• Insert
• Delete
• Find
Using balanced binary search trees we can 
implement a dictionary data structure such that 
each operation takes O(log n) time. 
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Balanced search trees
Balanced search tree: A search-tree data 
structure for which a height of O(log n) is 
guaranteed when implementing a dynamic 
set of n items.

Examples:

• AVL trees
• 2-3 trees
• 2-3-4 trees
• B-trees
• Red-black trees
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Red-black trees
This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x, 

to a descendant leaf have the same number of 
black nodes = black-height(x).
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Example of a red-black tree

h = 4
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Example of a red-black tree
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1. Every node is either red or black.
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Example of a red-black tree
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2., 3. The root and leaves (NIL’s) are black.
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Example of a red-black tree
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4. If a node is red, then both its children are 
black.
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Example of a red-black tree

5. All simple paths from any node x, excluding 
x,  to a descendant leaf have the same 
number of black nodes = black-height(x).  
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bh = 2

bh = 1

bh = 1

bh = 2

bh = 0
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction.  Read carefully.)
INTUITION:
• Merge red nodes 

into their black 
parents.
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction.  Read carefully.)
INTUITION:
• Merge red nodes 

into their black 
parents.
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction.  Read carefully.)
INTUITION:
• Merge red nodes 

into their black 
parents.
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction.  Read carefully.)
INTUITION:
• Merge red nodes 

into their black 
parents.
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Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction.  Read carefully.)
INTUITION:
• Merge red nodes 

into their black 
parents.



5

CS 3343 Analysis of Algorithms 173/5/09

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction.  Read carefully.)

• This process produces a tree in which each node 
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h′ of leaves.

INTUITION:
• Merge red nodes 

into their black 
parents.

h′
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Proof (continued)

h′

h

• We have
h′ ≥ h/2, since
at most half
the vertices on any 
path are red.

• The number of leaves 
in each tree is n + 1
⇒ n + 1 ≥ 2h'

⇒ log(n + 1) ≥ h' ≥ h/2
⇒ h ≤ 2 log(n + 1).
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Query operations

Corollary. The queries SEARCH, MIN, 
MAX, SUCCESSOR, and PREDECESSOR
all run in O(log n) time on a red-black 
tree with n nodes.
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Modifying operations

The operations INSERT and DELETE cause 
modifications to the red-black tree:
1. the operation itself,
2. color changes,
3. restructuring the links of the tree 

via “rotations”.
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Rotations

AA
BB

αα ββ
γγ

RIGHT-ROTATE(B)

BB
AA

γγββ
αα

LEFT-ROTATE(A)

• Rotations maintain the inorder ordering of keys:
a ∈ α, b ∈ β, c ∈ γ  ⇒ a ≤ A ≤ b ≤ B ≤ c.

• Rotations maintain the binary search tree property
• A rotation can be performed in O(1) time.
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Red-black trees
This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x, 

to a descendant leaf have the same number of 
black nodes = black-height(x).
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Insertion into a red-black tree

1515

Example:
• Insert x =15.
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IDEA: Insert x in tree.  Color x red.  Only red-
black property 4 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.
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Insertion into a red-black tree

1515

Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
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IDEA: Insert x in tree.  Color x red.  Only red-
black property 4 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.
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Insertion into a red-black tree

1515

Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
88 1111

1010

1818

2626

2222

77

33

IDEA: Insert x in tree.  Color x red.  Only red-
black property 4 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.
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Insertion into a red-black tree
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Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
• RIGHT-ROTATE(18).

33

IDEA: Insert x in tree.  Color x red.  Only red-
black property 4 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.
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Insertion into a red-black tree
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Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
• RIGHT-ROTATE(18).

33

IDEA: Insert x in tree.  Color x red.  Only red-
black property 4 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.

CS 3343 Analysis of Algorithms 283/5/09

Insertion into a red-black tree
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Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7)

33

IDEA: Insert x in tree.  Color x red.  Only red-
black property 4 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.
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Insertion into a red-black tree
IDEA: Insert x in tree.  Color x red.  Only red-
black property 4 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.
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Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7)

33
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Insertion into a red-black tree
IDEA: Insert x in tree.  Color x red.  Only red-
black property 4 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.
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Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33
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Insertion into a red-black tree
IDEA: Insert x in tree.  Color x red.  Only red-
black property 4 might be violated.  Move the 
violation up the tree by recoloring until it can 
be fixed with rotations and recoloring.

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the 

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.
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Pseudocode
RB-INSERT(T, x)

TREE-INSERT(T, x)
color[x] ← RED ⊳ only RB property 4 can be violated
while x ≠ root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]
then y ← right[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then 〈Case 1〉
else  if x = right[p[x]]

then 〈Case 2〉 ⊳ Case 2 falls into Case 3
〈Case 3〉

else 〈“then” clause with “left” and “right” swapped〉
color[root[T]] ← BLACK



9

CS 3343 Analysis of Algorithms 333/5/09

Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.
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Case 1

BB

CC

DDAA

x
y

(Or, A’s children are swapped.)

BB

CC

DDAA

new x

Push C’s black onto A
and D, and recurse, 
since C’s parent may be 
red.

Recolor

p[x] = left[p[p[x]]
y = right[p[p[x]]
color[y] = RED

Recurse
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Case 2

BB

CC

AA

x

y
LEFT-ROTATE(A)

AA

CC

BB

x

y

Transform to Case 3.
p[x] = left[p[p[x]]
y = right[p[p[x]]

x = right[p[x]]
color[y] = BLACK
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RIGHT-ROTATE(C)
(and recolor)

Case 3

AA

CC

BB

x

y
AA

BB

CC

Done!  No more 
violations of RB 
property 4 are 
possible.

p[x] = left[p[p[x]]
y = right[p[p[x]]

x = left[p[x]]
color[y] = BLACK
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Analysis

• Go up the tree performing Case 1, which only 
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(log n) with O(1) rotations.
RB-DELETE — same asymptotic running time 
and number of rotations as RB-INSERT (see 
textbook).
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Pseudocode (part II)
else 〈“then” clause with “left” and “right” swapped〉
⊳ p[x] = right[p[p[x]]
then y ← left[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then 〈Case 1’〉
else  if x = left[p[x]]

then 〈Case 2’〉 ⊳ Case 2’ falls into Case 3’
〈Case 3’〉

color[root[T]] ← BLACK
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Case 1’

CC

y

(Or, A’s children are swapped.)

Recolor

p[x] = right[p[p[x]]
y = left[p[p[x]]
color[y] = RED

BB

AA

x
DD

Push C’s black onto A
and D, and recurse, 
since C’s parent may be 
red.

new xCC

y

BB

AA

x
DD

Recurse
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Case 2’

CC RIGHT-ROTATE(A)

p[x] = right[p[p[x]]
y = left[p[p[x]]

x = left[p[x]]
color[y] = BLACK

AAy

BBx

Transform to Case 3’.

CC

AA

y BB
x
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Case 3’

LEFT-ROTATE(C)
(and recolor)

CC

BB

AA

Done!  No more 
violations of RB 
property 4 are 
possible.

p[x] = right[p[p[x]]
y = left[p[p[x]]

x = right[p[x]]
color[y] = BLACK

CC

AA

y BB
x


