
CMPS 6610/4610 Algorithms 1

CMPS 6610/4610 – Fall 2016

Divide-and-Conquer
Carola Wenk

Slides courtesy of Charles Leiserson
with changes and additions by Carola Wenk

2

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the
original problem size.

2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.

CMPS 6610/4610 Algorithms

CMPS 6610/4610 Algorithms 3

Merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[0 . . n/2 -1])
3. MERGE-SORT (A[n/2 . . n-1])
4. “Merge” the 2 sorted lists.

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size n/2
3. Combine: Linear-time key subroutine MERGE

CMPS 6610/4610 Algorithms 4

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time dn (n) to merge a total
of n elements (linear time).

CMPS 6610/4610 Algorithms 5

Analyzing merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[0 . . n/2+1])
3. MERGE-SORT (A[n/2 . . n-1])
4. “Merge” the 2 sorted lists.

T(n)
d0
T(n/2)
T(n/2)
dn

Sloppiness: Should be T(n/2) + T(n/2) ,
but it turns out not to matter asymptotically.

CMPS 6610/4610 Algorithms 6

Recurrence for merge sort

T(n) =
d0 if n = 1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it
O(n) or O(n2) or O(n3) or …?

CMPS 6610/4610 Algorithms 7

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)

CMPS 6610/4610 Algorithms 8

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn

CMPS 6610/4610 Algorithms 9

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2

CMPS 6610/4610 Algorithms 10

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

d0

h = log n

dn

dn

dn

…

#leaves = n d0n
Total dn log n + d0n

CMPS 6610/4610 Algorithms 11

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• It is good for generating guesses of what the
runtime could be.

But: Need to verify that the guess is correct.
→ Induction (substitution method)

CMPS 6610/4610 Algorithms 12

Substitution method

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of

induction)

The most general method to solve a recurrence
(prove O and separately):

CMPS 6610/4610 Algorithms 13

Convex Hull Problem

 Given a set of pins on a pinboard

and a rubber band around them.

How does the rubber band look
when it snaps tight?

 The convex hull of a point set is
one of the simplest shape
approximations for a set of points.

CMPS 6610/4610 Algorithms 14

Convex Hull: Divide & Conquer
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two
sets A and B:

 A contains the left n/2 points,

 B contains the right n/2 points

Recursively compute the convex
hull of A

Recursively compute the convex
hull of B

 Merge the two convex hulls

A B

CMPS 6610/4610 Algorithms 15

Merging
 Find upper and lower tangent

 With those tangents the convex hull
of AB can be computed from the
convex hulls of A and the convex hull
of B in O(n) linear time

A B

CMPS 6610/4610 Algorithms 16

check with
orientation test

right turn
left turn

Finding the lower tangent
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both

convex hulls of A and B do{
while T not lower tangent to
convex hull of A do{

a=a-1
}
while T not lower tangent to
convex hull of B do{
b=b+1

}
}

A B
0

a=2

1

5

3

4

0

1

2

3

4=b

5

6
7

CMPS 6610/4610 Algorithms 17

Convex Hull: Runtime
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two
sets A and B:

 A contains the left n/2 points,

 B contains the right n/2 points

Recursively compute the convex
hull of A

Recursively compute the convex
hull of B

 Merge the two convex hulls

O(n log n) just once

O(1)

T(n/2)

T(n/2)

O(n)

CMPS 6610/4610 Algorithms 18

Convex Hull: Runtime
 Runtime Recurrence:

T(n) = 2 T(n/2) + dn

 Solves to T(n) = (n log n)

19

Powering a number

Problem: Compute a n, where n N.

a n =
a n/2 a n/2 if n is even;
a (n–1)/2 a (n–1)/2 a if n is odd.

Divide-and-conquer algorithm: (recursive squaring)

T(n) = T(n/2) + (1) T(n) = (log n) .

Naive algorithm: (n).

CMPS 6610/4610 Algorithms

