CMPS 6610/4610 – Fall 2016

Divide-and-Conquer Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 6610/4610 Algorithms

The divide-and-conquer design paradigm

- **1.** *Divide* the problem (instance) into subproblems of sizes that are fractions of the original problem size.
- 2. *Conquer* the subproblems by solving them recursively.
- 3. *Combine* subproblem solutions.

Merge sort

- **1.** *Divide:* Trivial.
- **2.** Conquer: Recursively sort 2 subarrays of size n/2
- 3. *Combine:* Linear-time key subroutine MERGE
 - MERGE-SORT $(A[0 \dots n-1])$
 - 1. If n = 1, done.
 - **2.** Merge-Sort (A[0..[n/2]-1])
 - **3.** Merge-Sort $(A[\lceil n/2 \rceil . . . n-1])$
 - 4. "*Merge*" the 2 sorted lists.

Merging two sorted arrays

Time $dn \in \Theta(n)$ to merge a total of *n* elements (linear time).

CMPS 6610/4610 Algorithms

Analyzing merge sort

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

$$T(n) = \begin{cases} d_0 \text{ if } n = 1; \\ 2T(n/2) + dn \text{ if } n > 1. \end{cases}$$

• But what does T(n) solve to? I.e., is it O(n) or $O(n^2)$ or $O(n^3)$ or ...?

CMPS 6610/4610 Algorithms

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. T(n)

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- It is good for generating **guesses** of what the runtime could be.

But: Need to **verify** that the guess is correct. \rightarrow Induction (substitution method)

Substitution method

The most general method to solve a recurrence (prove O and Ω separately):

Guess the form of the solution: (e.g. using recursion trees, or expansion)
Verify by induction (inductive step).
Solve for O-constants n₀ and c (base case of induction)

Convex Hull Problem

- Given a set of pins on a pinboard and a rubber band around them.
 - How does the rubber band look when it snaps tight?
- The convex hull of a point set is one of the simplest shape approximations for a set of points.

Convex Hull: Divide & Conquer

- Preprocessing: sort the points by x-coordinate
- Divide the set of points into two sets A and B:
 - A contains the left $\lfloor n/2 \rfloor$ points,
 - **B** contains the right $\lceil n/2 \rceil$ points
- •Recursively compute the convex hull of **A**
- •Recursively compute the convex hull of **B**
- Merge the two convex hulls

Merging

• Find upper and lower tangent

• With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in O(n) linear time

Finding the lower tangent

Convex Hull: Runtime

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets A and B:
 - A contains the left $\lfloor n/2 \rfloor$ points,
 - **B** contains the right $\lceil n/2 \rceil$ points
- •Recursively compute the convex hull of **A**
- •Recursively compute the convex hull of **B**
- Merge the two convex hulls

CMPS 6610/4610 Algorithms

 $O(n \log n)$ just once

O(1)

T(*n*/2)

T(*n*/2)

O(n)

Convex Hull: Runtime

• Runtime Recurrence:

T(n) = 2 T(n/2) + dn

• Solves to $T(n) = \Theta(n \log n)$

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$. Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm: (recursive squaring)

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even}; \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

 $T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\log n)$.