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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems of sizes that are fractions of the 
original problem size.

2. Conquer the subproblems by solving them 
recursively.

3. Combine subproblem solutions.
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Merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[ 0 . . n/2 -1])
3. MERGE-SORT (A[ n/2 . . n-1 ])
4. “Merge” the 2 sorted lists.

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size n/2
3. Combine: Linear-time key subroutine MERGE
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Merging two sorted arrays
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Time dn  (n) to merge a total 
of n elements (linear time).
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Analyzing merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[ 0 . . n/2+1])
3. MERGE-SORT (A[ n/2 . . n-1 ])
4. “Merge” the 2 sorted lists.

T(n)
d0
T(n/2)
T(n/2)
dn

Sloppiness: Should be T( n/2 ) + T( n/2 ) , 
but it turns out not to matter asymptotically.
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Recurrence for merge sort

T(n) =
d0 if n = 1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it 
O(n) or O(n2) or O(n3) or …?
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

d0

h = log n

dn

dn

dn

…

#leaves = n d0n
Total dn log n + d0n
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Recursion-tree method

• A recursion tree models the costs (time) of a 
recursive execution of an algorithm.

• The recursion-tree method can be unreliable, 
just like any method that uses ellipses (…).

• It is good for generating guesses of what the 
runtime could be. 

But: Need to verify that the guess is correct.
→ Induction (substitution method)
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Substitution method

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of 

induction)

The most general method to solve a recurrence 
(prove O and  separately):
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Convex Hull Problem

 Given a set of pins on a pinboard

and a rubber band around them.

How does the rubber band look   
when it snaps tight?

 The convex hull of a point set is 
one of the simplest shape 
approximations for a set of points.
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Convex Hull: Divide & Conquer
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two 
sets A and B:

 A contains the left n/2 points, 

 B contains the right n/2 points 

Recursively compute the convex 
hull of A

Recursively compute the convex 
hull of B

 Merge the two convex hulls

A B
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Merging 
 Find upper and lower tangent

 With those tangents the convex hull 
of AB can be computed from the 
convex hulls of A and the convex hull 
of B in O(n) linear time

A B
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check with 
orientation test

right turn
left turn

Finding the lower tangent 
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both   

convex hulls of A and B do{
while T not lower tangent to 
convex hull of A do{

a=a-1
}
while T not lower tangent to 
convex hull of B do{
b=b+1

}
}
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Convex Hull: Runtime
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two 
sets A and B:

 A contains the left n/2 points, 

 B contains the right n/2 points 

Recursively compute the convex 
hull of A

Recursively compute the convex 
hull of B

 Merge the two convex hulls

O(n log n)  just once

O(1)

T(n/2)

T(n/2)

O(n)
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Convex Hull: Runtime
 Runtime Recurrence:

T(n) = 2 T(n/2) + dn

 Solves to T(n) = (n log n)
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Powering a number

Problem: Compute a n, where n N.

a n =
a n/2  a n/2 if n is even;
a (n–1)/2  a (n–1)/2  a if n is odd.

Divide-and-conquer algorithm: (recursive squaring)

T(n) = T(n/2) + (1)   T(n) = (log n) . 

Naive algorithm: (n).
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