Final Exam Review

Relevant Material

- All material from $1 / 13 / 20$ until $4 / 16 / 20$ (inclusive)
- This includes homeworks 1-9
- All slides, board pictures, and Miro boards
- The covered chapters in the book are listed below under "Ch.", and the covered chapters in Mount's lecture notes are listed below under "L."
- Need to know basic ideas and complexities (runtimes, space) of algorithms and data structures. (Distinguish between deterministic and expected runtimes.)
- Convex Hulls (Ch. 1, L. 1,3)
- Practice problems from the book: Ch. 1, page 15; 1.1-1.3, 1.5, 1.6a, 1.7, 1.8
- Definition of convex set, and of convex hull of a set of points
- Orientation test (halfplane test)
- Algorithms: Jarvis' March, Incremental Insertion, Divide and Conquer, Graham's Scan
- $\Omega(n \log n)$ lower bound by reduction from sorting
- Graduate: Chan's algorithm
- Sweepline Algorithms (Ch. 2, 5.1; L. 5
- Practice problems from the book: Ch. 2, page 41; 2.1, 2.2, 2.5-2.10
- Structure of a sweepline algorithm: Cleanliness property, sweep line status, event queue, event handling
- Closest pair
- Line segment intersection (output-sensitive algorithm)
- Triangulation and Guarding (Ch. 3; L. 6, 22
- Practice problems from the book: Ch. 3, page 60; 3.1-3.7, 3.11-3.14
- Triangulation of simple polygons:
* \#triangles, dual graph, 3-coloring lemma, art-gallery theorem
* $O\left(n^{2}\right)$ algorithm (D\&C based on ear cutting / proof of theorem 1)
* $O(n)$ algorithm for monotone polygons (definition of a monotone polygon)
* $O(n \log n)$ sweep-line algorithm for non-monotone polygons: Split into monotone pieces, then triangulate each monotone piece. (It is not necessary to know all the cases of this algorithm by heart.)
- Point Location (Ch. 6.1, 6.2; L. 25, 9, 10
- Practice problems from the book: Ch. 6, page 144; 6.1, 6.4-6.8, 6.13
- Planar subdivision (definition, complexity), Euler's formula, doubly-connected edge list
- Slab method for point location
- Kirkpatrick's algorithm: Build hierarchy by incrementally removing independent set of points and retriangulating
- Trapezoidal map; randomized incremental construction (need to know results, not details of analysis); backwards analysis, DAG for point location
- Voronoi Diagrams (Ch. 7.1, 7.2; L. 11)
- Practice problems from the book: Ch. 7, page 170; 7.1-7.3, 7.5-7.7, 7.12
- Definition, bisectors, complexity; applications
- Fortune's sweep
* Beach line consisting of sequence of parabolas stored implicitly in binary search tree
* Site events, circle events
- Delaunay Triangulation (Ch. 9.1, 9.2; L. 12, 13
- Practice problems from the book: Ch. 9, page 215: 9.2-9.3, 9.8, 9.9, 9.12-9.16
- Triangulations of point sets
- DT dual graph of VD
- Different characterizations of DT (empty circumcircle, legal edges, angleoptimality)
- Empty circle property
- Edge flips, and edge-flip based algorithm to compute DT
- Randomized incremental construction
- Connection between DT and 3D CH
- Linear Programming (Ch. 4.2-4.4; L. 8)
- Practice problems from the book: Ch. 4, page 91; 4.9-4.11, 4.14-4.16
- LP definition
- Halfplane (or halfspace) intersection; relationship to LP
- Randomized incremental construction (RIC), uses backwards analysis
- Point-Line Duality and Arrangements (Ch. 8.2, 8.3; L. 14, 15, 28)
- Practice problems from the book: Ch. 8, page 188; 8.1-8.11
- Point-line duality definition; dual point, lines, line segments
- Arrangements of lines
- Zone theorem
- Ham sandwich theorem
- Interconnectedness between CH-DT-VD-UE

- Orthogonal range searching (Ch. 5.1-5.4; L. 31-34)

- Practice problems from the book: Ch. 5, page 117; 5.1-5.7, 5.10, 5.11
- Range trees, nested range trees
- Grad: Fractional cascading
- kd-trees
- Windowing: interval trees, segment trees, windowing (range-segment trees)

Not on the Test

- Details on linear algebra
- Detailed analyses of randomized algorithms
- Topics of paper presentations
- Robot motion planning
- Grad: Dobkin-Kirkpatrick hierarchy
- Grad: Weighted Voronoi diagrams

