$3 / 26 / 20$

8. Homework (undergrad)

Due $4 / 2 / 20$ before class

Please justify all your answers. Often it helps to draw pictures.

1. Dual Line Segment (9 points)

Consider two points $a=(0,-2)$ and $b=(3,1)$. Let l be the line through a and b.
(a) (2 points) Draw the primal plane with a, b, l and draw the dual plane with a^{*}, b^{*}, l^{*}. Specify the equations for l, a^{*}, b^{*} and the coordinates for l^{*}.
(b) (2 point) Consider the points $c=(1,-1)$ and $d=(2,0)$. Draw c^{*} and d^{*} in the dual plane.
(c) (3 points) Now consider the line segment s from a to b. (Note that c and d lie on s.) What is the dual of s ? You can describe it in words.
(d) (2 points) If a line l_{2} in the primal plane intersects s, where must its dual point l_{2}^{*} lie?

2. Linear Separator (8 points)

Let $R=\left\{r_{1}, \ldots, r_{m}\right\}$ be set of m red points and let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a set of n blue points in the plane. A line l is called a linear separator if all points of R lie on one side of l and all points of B lie on the other side. (You may assume appropriate general position, and may disregard points that lie exactly on the line.)

Use point-line duality to develop an algorithm for this problem which runs in expected linear time. (Hint: Linear Programming.)

3. Sign Vectors (8 points)

Consider an arrangement \mathcal{A} of six lines $l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}$, and let f be an arbitrary vertex, edge, or face of \mathcal{A}. Then f has an associated sign vector $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right)$, where for each $1 \leq i \leq 6$:

$$
s_{i}=\left\{\begin{aligned}
+1, & \text { if } f \text { lies above } l_{i} \\
0, & \text { if } f \text { lies on } l_{i} \\
-1, & \text { if } f \text { lies below } l_{i}
\end{aligned}\right.
$$

(a) For each of the sign vectors below, give an arrangement of six lines that has a vertex, edge, or face with this sign vector. Label the lines and mark the vertex, edge, or face. Make the arrangement simple, if possible, or argue why the arrangement cannot be simple.
i. $(+1,+1,+1,+1,+1,+1)$ ii. $(+1,0,0,-1,-1,-1)$ iii. $(-1,0,0,-1,+1,-1)$
(b) Can one find a single arrangement of lines that contains a vertex, edge, or face for each of the three sign vectors in (a)? Argue why or why not.

