6. Homework (undergrad)

Due 3/12/20 before class
Please justify all your answers. Often it helps to draw pictures.

1. Delaunay (5 points)

Sketch a deterministic (i.e., non-randomized) algorithm to compute the Delaunay Triangulation of a point set P of n points in $O(n \log n)$ time. Analyze its runtime.
2. Parabolic Arc (5 points)

Give an example where the parabola defined by some site p_{i} contributes $O(n)$ arcs to the beach line, where n is the number of input points.

3. Hausdorff Distance (8 points)

Let A and B be two point sets in the plane with $m=|A|$ and $n=|B|$. The directed Hausdorff distance $h(A, B)$ is defined as $h(A, B)=\max _{a \in A} \min _{b \in B} d(a, b)$, where $d(.,$.$) is the Euclidean distance. The (undirected) Hausdorff distance H(A, B)$ is defined as $H(A, B)=\max \{h(A, B), h(B, A)\}$.

Use the Voronoi diagram and point location structures to show that the undirected Hausdorff distance can be computed in $O((n+m) \log (n+m))$ time.
4. Sum of Edge Lengths (5 points)

It appears that illegal edges are often long edges, so it is a natural question to ask whether the Delaunay triangulation might minimize edge lengths. Give an example which shows that the Delaunay triangulation of a point set is not always the triangulation with the minimum sum of edge lengths.

