3/5/20

# 6. Homework (undergrad) Due 3/12/20 before class

#### Please justify all your answers. Often it helps to draw pictures.

### 1. Delaunay (5 points)

Sketch a deterministic (i.e., non-randomized) algorithm to compute the Delaunay Triangulation of a point set P of n points in  $O(n \log n)$  time. Analyze its runtime.

### 2. Parabolic Arc (5 points)

Give an example where the parabola defined by some site  $p_i$  contributes O(n) arcs to the beach line, where n is the number of input points.

#### 3. Hausdorff Distance (8 points)

Let A and B be two point sets in the plane with m = |A| and n = |B|. The directed Hausdorff distance h(A, B) is defined as  $h(A, B) = \max_{a \in A} \min_{b \in B} d(a, b)$ , where d(.,.) is the Euclidean distance. The (undirected) Hausdorff distance H(A, B) is defined as  $H(A, B) = \max\{h(A, B), h(B, A)\}$ .



Use the Voronoi diagram and point location structures to show that the undirected Hausdorff distance can be computed in  $O((n+m)\log(n+m))$  time.

## 4. Sum of Edge Lengths (5 points)

It appears that illegal edges are often long edges, so it is a natural question to ask whether the Delaunay triangulation might minimize edge lengths. Give an example which shows that the Delaunay triangulation of a point set is not always the triangulation with the minimum sum of edge lengths.