4. Homework (undergrad)

Due $2 / 13 / 20$ before class
Please justify all your answers. Often it helps to draw pictures.

1. Kirkpatrick's Hierarchy (5 points)

Consider slide 7 of the point location II slides as well as the figure below. The path in the DAG for locating point p is $K-I-C-u-i$. But there are other paths in the hierarchy that also end in triangle i.
Now consider the path $K-J-F-v-i$. Describe where in the original triangulation a point p^{\prime} has to lie such that the point location for it would follow this path.

FLIP OVER TO BACK PAGE \Longrightarrow

2. DCEL (6 points)

Which of the following equalities are always true? Justify your answers.
(a) $\operatorname{Twin}(\operatorname{Twin}(\vec{e}))=\vec{e}$
(b) $\operatorname{Next}(\operatorname{Prev}(\vec{e}))=\vec{e}$
(c) $\operatorname{Twin}(\operatorname{Prev}(\operatorname{Twin}(\vec{e})))=\operatorname{Next}(\vec{e})$

3. Adjacent Vertices ($\mathbf{1 0}$ points)

You are given a planar subdivision in a doubly-connected edge list, and a vertex v in this DCEL. Give pseudocode to output all vertices adjacent to v in clockwise order. Your algorithm should run in $O(\operatorname{deg}(v))$ time, where $\operatorname{deg}(v)$ is the degree of v. (Hint: Draw an example picture and run your algorithm on this example to make sure it works.)

