3. Homework (undergrad)

Due 2/6/20 before class

1. Guarding the Fleur-de-Lis (9 points)

For the simple polygon P below:
(a) Apply the method employed by the 3-coloring-based proof to obtain a set of at most $\left\lfloor\frac{n}{3}\right\rfloor$ vertex guards that guard P.
(b) By inspection, obtain the minimum number of vertex guards necessary to guard P. Justify your answer.
(c) By inspection, obtain the minimum number of point guards necessary to guard P, i.e., guards are allowed to be anywhere in the interior or on the boundary of P. Justify your answer.

2. Guarding Boundary vs. Interior (5 points)

Give an example of a polygon together with a placement of vertex guards, such that the whole polygon boundary is guarded but not the whole interior.

3. Intersecting Convex Polygons (10 points)

Let P and Q be two convex polygons with m and n vertices, respectively. Such as the two polygons on the right. Each polygon is given as a list of vertices in counter-clockwise order. Give a sweepline algorithm that outputs all intersection points between the boundary of P and the boundary of Q in $O(n+m)$ time. Make sure to describe what you store in the sweep line status, what your events are, and how you handle the events (pictures help). And then analyze the runtime.

(Note: Since the runtime is $O(n+m)$ the sweep line status will not be a binary search tree.)

