$1 / 23 / 20$

## 2. Homework (undergrad)

Due $\mathbf{1 / 3 0} / \mathbf{2 0}$ before class

## 1. Line segment intersection (10 points)

Given two line segments $\overline{a b}$ and $\overline{c d}$ in the plane, where $a, b, c, d \in \mathbb{R}^{2}$. The goal is to test them for intersection.
(a) (3 points) Let $a=\binom{6}{5}, b=\binom{14}{9}, c=\binom{7}{2}$, and $d=\binom{9}{10}$. Express each line segment as a convex combination, and use this representation to determine if $\overline{a b}$ and $\overline{c d}$ intersect, and if so, compute their intersection point.
(b) (2 points) Do $\overline{e b}$ and $\overline{c d}$ intersect, where $e=\binom{10}{7}$ ? What is different compared to part (a)?
(c) (5 points) Explain how you can use one or more orientation tests to test if two line segments intersect. (Hint: Case analysis. Draw pictures of examples, and determine important configurations of $a, b, c, d$.)

## 2. Lower bounds (3 points)

Prove a lower bound of $\Omega(n \log n)$ for Sorting, by reducing from ElEmENT Uniqueness (i.e., by using the knowledge that element Uniqueness has a lower bound of $\Omega(n \log n))$.
3. Visible Segments Sweep (10 points)

Let $S$ be a set of $n$ disjoint line segments in the plane, and let $p$ be a point not on any of the line segments of $S$. We say that the point $p$ sees a line segment $s$ if there is a point $q \in s$ such that the segment $p q$ does not intersect any other line segment of $S$. We wish to determine all line segments of $S$ that $p$ can see.
Give an $O(n \log n)$ time algorithm for this problem that uses a rotating half-line with its endpoint at $p$ to sweep the plane. You do not have to give pseudocode but you should explain all the necessary components of the sweep.


