8. Homework (grad)
 Due 4/2/20 before class

Please justify all your answers. Often it helps to draw pictures.

1. Linear Separator (8 points)

Let $R=\left\{r_{1}, \ldots, r_{m}\right\}$ be set of m red points and let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a set of n blue points in the plane. A line l is called a linear separator if all points of R lie on one side of l and all points of B lie on the other side. (You may assume appropriate general position, and may disregard points that lie exactly on the line.)

Use point-line duality to develop an algorithm for this problem which runs in expected linear time. (Hint: Linear Programming.)

2. Dual Line Segment and Triangle (9 points)

(a) (3 points) What is the dual of a line segment? You can describe it in words.
(b) (3 points) Given a line segment s and a line l. If l intersects in the primal plane, where must its dual point l^{*} lie?
(c) (3 points) Consider a (solid) triangle $\Delta p q r$ with corner points p, q, r. Describe its dual.
3. Convex Hull of Intersections (8 points)

Let \mathcal{L} be a set of n lines in the plane, no two of which are parallel. Let S be the set of all $O\left(n^{2}\right)$ intersection points between any two lines in \mathcal{L}. Give an $O(n \log n)$ time algorithm to compute an axis-parallel rectangle that contains S.
(Hint: Your algorithm cannot compute all points in S explicitly. Sort all lines by slope, and prove that it is enough to consider only a certain subset of intersection points.)

