6. Homework (grad)

Due 3/12/20 before class

Please justify all your answers. Often it helps to draw pictures.

1. Gabriel Graph (9 points)

Let P be a set of n points in the plane. The Gabriel graph $G G(P)$ is defined as follows: Two points $p, q \in P$ are connected by an edge in $G G(P)$ iff the circle with diameter $p q$ does not contain any other point of P in its interior.
(a) Prove that $D T(P)$ contains $G G(P)$. I.e., every edge in $G G(P)$ is also a Delaunay edge.
(b) Prove that p and q are adjacent in $G G(P)$ if and only if the Delaunay edge between p and q intersects its dual Voronoi edge.
2. Worst-Case DT Runtime (7 points)

The randomized incremental construction of the Delaunay triangulation of a set of n points in the plane takes $\Omega\left(n^{2}\right)$ time in the worst-case. That means that, for each n, there is a set of n points together with a particular input order such that the algorithm executes $\Omega\left(n^{2}\right)$ edge flips.
What properties are required to cause that many flips? Please sketch the construction of such a bad input (it should work for general n). (Hint: It might help to play the Voronoi/Delaunay demo linked to from the resources website, or with Voroglide (on Canvas).)

3. Reverse Voronoi (10 points)

Suppose we are given a subdivision of the plane into n convex regions. We suspect that this subdivision is a Voronoi diagram, but we do not know the sites. Develop an algorithm that finds a set of n point sites whose Voronoi diagram is exactly the given subdivision, if such a set exists.
Hint: First consider a Voronoi diagram for three vertices. For the general case, if you are given the position of one point, how can you compute the position of the other points?

