4. Homework (grad)

Due 2/13/20 before class
Please justify all your answers. Often it helps to draw pictures.

1. DCEL (8 points)

(a) Which of the following equalities are always true? Justify your answers.
i. $\operatorname{Twin}(\operatorname{Twin}(\vec{e}))=\vec{e}$
ii. $\operatorname{Next}(\operatorname{Prev}(\vec{e}))=\vec{e}$
iii. $\operatorname{Twin}(\operatorname{Prev}(\operatorname{Twin}(\vec{e})))=\operatorname{Next}(\vec{e})$
(b) You are given a planar subdivision in a doubly-connected edge list, where $\operatorname{Twin}(\vec{e})=\operatorname{Next}(\vec{e})$ for every half-edge \vec{e}. How many faces can the subdivision have?

2. Adjacent Vertices (10 points)

You are given a planar subdivision in a doubly-connected edge list, and a vertex v in this DCEL. Give pseudocode to output all vertices adjacent to v in clockwise order. Your algorithm should run in $O(\operatorname{deg}(v))$ time, where $\operatorname{deg}(v)$ is the degree of v. (Hint: Draw an example picture and run your algorithm on this example to make sure it works.)

3. Dobkin-Kirkpatrick (8 points)

Let P be a convex polytope with n vertices in \mathbb{R}^{3}. Such a convex polytope is defined as the convex hull of these vertices, and its boundary is a connected planar embedded graph.
The Kirkpatrick hierarchy can also also be used to create a hierarchy of polytopes: The Dobkin-Kirkpatrick hierarchy. The preprocessing time, space complexity, and query time are the same as for Kirkpatrick's hierarchy. See below for an example sequence of polytopes from such a hierarchy (the corresponding DAG is not shown):

Assume this hierarchy has been computed for P. Describe and analyze an algorithm that for a given query point $q \in \mathbb{R}^{3}$ computes the distance from q to P, i.e., the smallest distance from Q to any point in P, in $O(\log n)$ time.
(You can assume the existence of basic geometric primitives, such as distance computation from a point to a plane or to a triangle. Note that P is solid, so if q lies inside P then the distance is zero.)

