3. Homework (grad)
 Due 2/6/20 before class

1. Guarding Boundary vs. Interior (5 points)

Give an example of a polygon together with a placement of vertex guards, such that the whole polygon boundary is guarded but not the whole interior.
2. Triangulating a Point Set (10 points)

A triangulation of a set of points P in the plane is a simple, planar embedded, connected graph $T=(P, E)$ such that (i) every edge in E is a line segment, (ii) the outer face is bounded by edges of $C H(P)$, and (iii) all inner faces are triangles.
Give an algorithm for computing such a triangulation of n points in the plane and analyze its runtime.

3. Edge Flips (10 points)

Consider a triangulated quadrilateral a, b, c, d in the plane, with diagonal $\overline{a c}$. An edge flip replaces $\overline{a c}$ with $\overline{b d}$. We only consider valid edge flips that yield a valid new triangulation of the quadrilateral a, b, c, d.

Show that any two triangulations of a convex polygon can be transformed into each other by edge flips.

