# 2. Homework (grad) <br> Due $\mathbf{1 / 3 0 / 2 0}$ before class 

## 1. Line segment intersection (5 points)

Explain how you can use one or more orientation tests to test if two line segments $\overline{a b}$ and $\overline{c d}$ intersect, where $a, b, c, d \in \mathbb{R}^{2}$. (Hint: Case analysis. Draw pictures of examples, and determine important configurations of $a, b, c, d$.)

## 2. Lower bounds ( 9 points)

Consider the following problems:
Sorting: Given a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of $n$ numbers, output the same numbers in non-decreasing order.
Element Uniqueness: Given a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of $n$ numbers, are there $i, j$, with $i \neq j$, such that $x_{i}=x_{j}$ ?
Closest Pair: Given a point set $P=\left\{p_{1}, \ldots, p_{n}\right\} \in \mathbb{R}^{2}$, output the closest pair of points in $P$.
All Nearest Neighbors: Given a point set $P=\left\{p_{1}, \ldots, p_{n}\right\} \in \mathbb{R}^{2}$. Compute for each point in $P$ its nearest neighbor in $P$ (i.e., point at minimum distance).
(a) Prove a lower bound of $\Omega(n \log n)$ for Sorting, by reducing from Element Uniqueness (i.e., by using the knowledge that element Uniqueness has a lower bound of $\Omega(n \log n)$ ).
(b) Prove a lower bound of $\Omega(n \log n)$ for Closest Pair by reducing from an appropriate problem.
(c) Prove a lower bound of $\Omega(n \log n)$ for All Nearest Neighbors by reducing from an appropriate problem.
3. Visible Segments Sweep (10 points)

Let $S$ be a set of $n$ disjoint line segments in the plane, and let $p$ be a point not on any of the line segments of $S$. We say that the point $p$ sees a line segment $s$ if there is a point $q \in s$ such that the segment $p q$ does not intersect any other line segment of $S$. We wish to determine all line segments of $S$ that $p$ can see.
Give an $O(n \log n)$ time algorithm for this problem that uses a rotating half-line with its endpoint at $p$ to sweep the plane. You do not have to give pseudocode but you should explain all the necessary components of the sweep.


