1. Homework (grad)

Due $\mathbf{1 / 2 3 / 2 0}$ before class

1. Binary search (10 points)

Assume you have an orientation test available which can determine in constant time whether three points make a left turn (i.e., the third point lies on the left of the oriented line described by the first two points) or a right turn. Now, let a point q and a convex polygon $P=\left\{p_{1}, \ldots, p_{n}\right\}$ in the plane be given, where the points of P are stored in an array in counter-clockwise order around P. Give pseudo-code to determine an upper tangent from q to P in $O(\log n)$ time, and analyze its runtime.
(Hint: It helps to annotate your code with pictures.)

2. Convex hull of line segments (10 points)

Let S be a set of n line segments in the plane. Let P be the set of $2 n$ endpoints of the segments in S. Prove that the convex hull of S is exactly the same as the convex hull of P. (Hint: It might help to break the proof into two parts, $C H(S) \subseteq C H(P)$ and $C H(P) \subseteq C H(S)$.)

3. Reading+: Chan's convex hull (10 points)

Please read Chan's algorithm for computing the convex hull in the plane in $O(n \log h)$ time, as described in lecture 19 in Mount's notes (page 19-23 top). Note that the LiveCG jar file (see link on Resources page) contains a demo of Chan's algorithm. Please feel free to post questions on Piazza.
Consider the following formulation of Chan's main algorithm:
(1) $h^{*}=2 ; L=$ fail
(2) while ($L \neq$ fail $)$
(a) $h^{*}=\min \left(2^{2^{i}}, n\right)$
(b) $L=\operatorname{RestrictedHull}\left(P, h^{*}\right)$
(c) $i++$
(3) return L

Let h be the number of vertices on the convex hull of P. If $h \leq h^{*}$ then RestrictedHull $\left(P, h^{*}\right)$ returns the convex hull of P, otherwise it returns "fail".

For each of the two cases below, determine the big-Oh runtime of Chan's algorithm when replacing line (2)(a) with the shown expression. Justify your answers.
(a) $h^{*}=\min \left(i^{2}, n\right)$
(b) $h^{*}=\min \left(2^{2^{2^{i}}}, n\right)$

