Planar Subdivisions and Point Location

Carola Wenk

Based on:
Computational Geometry: Algorithms and Applications
and David Mount’s lecture notes
Planar Subdivision

- Let $G=(V,E)$ be an undirected graph.
- G is planar if it can be embedded in the plane without edge crossings.

- A planar embedding (=drawing) of a planar graph G induces a **planar subdivision** consisting of vertices, edges, and faces.
Doubly-Connected Edge List

The doubly-connected edge list (DCEL) is a popular data structure to store the geometric and topological information of a planar subdivision. It contains records for each face, edge, vertex (Each record might also store additional application-dependent attribute information.) It should enable us to perform basic operations needed in algorithms, such as walk around a face, or walk from one face to a neighboring face.

The DCEL consists of:

- For each vertex \(v \), its coordinates are stored in \(\text{Coordinates}(v) \) and a pointer \(\text{IncidentEdge}(v) \) to a half-edge that has \(v \) as its origin.
- Two oriented half-edges per edge, one in each direction. These are called twins. Each of them has an origin and a destination. Each half-edge \(e \) stores a pointer \(\text{Origin}(e) \), a pointer \(\text{Twin}(e) \), a pointer \(\text{IncidentFace}(e) \) to the face that it bounds, and pointers \(\text{Next}(e) \) and \(\text{Prev}(e) \) to the next and previous half-edge on the boundary of \(\text{IncidentFace}(e) \).
- For each face \(f \), \(\text{OuterComponent}(f) \) is a pointer to some half-edge on its outer boundary (null for unbounded faces). It also stores a list \(\text{InnerComponents}(f) \) which contains for each hole in the face a pointer to some half-edge on the boundary of the hole.
Complexity of a Planar Subdivision

• The complexity of a planar subdivision is:
 \#vertices + \#edges + \#faces = n_v + n_e + n_f

• Euler’s formula for planar graphs:
 1) \(n_v - n_e + n_f \geq 2 \)
 2) \(n_e \leq 3n_v - 6 \)

2) follows from 1):

Count edges. Every face is bounded by \(\geq 3 \) edges.
Every edge bounds \(\leq 2 \) faces.
\[
\Rightarrow 3n_f \leq 2n_e \Rightarrow n_f \leq 2/3n_e \\
\Rightarrow 2 \leq n_v - n_e + n_f \leq n_v - n_e + 2/3 n_e = n_v - 1/3 n_e \\
\Rightarrow 2 \leq n_v - 1/3 n_e
\]

• Hence, the complexity of a planar subdivision is \(O(n_v) \), i.e., linear in the number of vertices.
Point Location

• **Point location task:** Preprocess a planar subdivision to efficiently answer point-location queries of the type: Given a point $p=(p_x, p_y)$, find the face it lies in.

• **Important metrics:**
 – Time complexity for preprocessing
 = time to construct the data structure
 – Space needed to store the data structure
 – Time complexity for querying the data structure
Slab Method

- **Slab method:**
 Draw a vertical line through each vertex. This decomposes the plane into slabs.

- In each slab, the vertical order of the line segments remains constant.
- If we know in which slab \(p \) lies, we can perform binary search, using the sorted order of the segments in the slab.
- Find slab that contains \(p \) by binary search on \(x \) among slab boundaries.
- A second binary search in slab determines the face containing \(p \).
- Search complexity \(O(\log n) \), but space complexity \(\Theta(n^2) \).
Kirkpatrick’s Algorithm

• Needs a triangulation as input.
• Can convert a planar subdivision with \(n \) vertices into a triangulation:
 – Triangulate each face, keep same label as original face.
 – If the outer face is not a triangle:
 • Compute the convex hull of the subdivision.
 • Triangulate pockets between the subdivision and the convex hull.
 • Add a large triangle (new vertices \(\mathbf{a}, \mathbf{b}, \mathbf{c} \)) around the convex hull, and triangulate the space in-between.

• The size of the triangulated planar subdivision is still \(O(n) \), by Euler’s formula.
• The conversion can be done in \(O(n \log n) \) time.
• Given \(\mathbf{p} \), if we find a triangle containing \(\mathbf{p} \) we also know the (label of) the original subdivision face containing \(\mathbf{p} \).
Kirkpatrick’s Hierarchy

- Compute a sequence T_0, T_1, ..., T_k of increasingly coarser triangulations such that the last one has constant complexity.
- The sequence T_0, T_1, ..., T_k should have the following properties:
 - T_0 is the input triangulation, T_k is the outer triangle
 - $k \in O(\log n)$
 - Each triangle in T_{i+1} overlaps $O(1)$ triangles in T_i

- How to build such a sequence?
 - Need to delete vertices from T_i.
 - Vertex deletion creates holes, which need to be re-triangulated.

- How do we go from T_0 of size $O(n)$ to T_k of size $O(1)$ in $k=O(\log n)$ steps?
 - In each step, delete a constant fraction of vertices from T_i.
- We also need to ensure that each new triangle in T_{i+1} overlaps with only $O(1)$ triangles in T_i.
Vertex Deletion and Independent Sets

When creating T_{i+1} from T_i, delete vertices from T_i that have the following properties:

- **Constant degree:**
 Each vertex v to be deleted has $O(1)$ degree in the graph T_i.
 - If v has degree d, the resulting hole can be re-triangulated with $d-2$ triangles
 - Each new triangle in T_{i+1} overlaps at most d original triangles in T_i

- **Independent sets:**
 No two deleted vertices are adjacent.
 - Each hole can be re-triangulated independently.
Independent Set Lemma

Lemma: Every planar graph on n vertices contains an independent vertex set of size $n/18$ in which each vertex has degree at most 8. Such a set can be computed in $O(n)$ time.

Use this lemma to construct Kirkpatrick’s hierarchy:

- Start with T_0, and select an independent set S of size $n/18$ in which each vertex has maximum degree 8. [Never pick the outer triangle vertices a, b, c.]
- Remove vertices of S, and re-triangulate holes.
- The resulting triangulation, T_1, has at most $17/18n$ vertices.
- Repeat the process to build the hierarchy, until T_k equals the outer triangle with vertices a, b, c.
- The depth of the hierarchy is $k = \log_{18/17} n$.
Hierarchy Example

Use this lemma to construct Kirkpatrick’s hierarchy:

- Start with T_0, and select an independent set S of size $n/18$ in which each vertex has maximum degree 8. [Never pick the outer triangle vertices a, b, c.]
- Remove vertices of S, and re-triangulate holes.
- The resulting triangulation, T_1, has at most $17/18n$ vertices.
- Repeat the process to build the hierarchy, until T_k equals the outer triangle with vertices a, b, c.
- The depth of the hierarchy is $k = \log_{18/17} n$
Hierarchy Data Structure

Store the hierarchy as a DAG:
- The root is \(T_k \).
- Nodes in each level correspond to triangles \(T_i \).
- Each node for a triangle in \(T_{i+1} \) stores pointers to all triangles of \(T_i \) that it overlaps.

How to locate point \(p \) in the DAG:
- Start at the root. If \(p \) is outside of \(T_k \) then \(p \) is in exterior face; done.
- Else, set \(\Delta \) to be the triangle at the current level that contains \(p \).
- Check each of the at most 6 triangles of \(T_{k-1} \) that overlap with \(\Delta \), whether they contain \(p \). Update \(\Delta \) and descend in the hierarchy until reaching \(T_0 \).
- Output \(\Delta \).
Analysis

• **Query time** is $O(\log n)$: There are $O(\log n)$ levels and it takes constant time to move between levels.

• **Space complexity** is $O(n)$:
 – Sum up sizes of all triangulations in hierarchy.
 – Because of Euler’s formula, it suffices to sum up the number of vertices.
 – Total number of vertices:

 $n + \frac{17}{18}n + \left(\frac{17}{18}\right)^2n + \left(\frac{17}{18}\right)^3n + \ldots$

 $\leq \frac{1}{1-\frac{17}{18}}n = 18 \, n$

• **Preprocessing time** is $O(n \log n)$:
 – Triangulating the subdivision takes $O(n \log n)$ time.
 – The time to build the DAG is proportional to its size.
Independent Set Lemma

Lemma: Every planar graph on n vertices contains an independent vertex set of size $n/18$ in which each vertex has degree at most 8. Such a set can be computed in $O(n)$ time.

Proof:
Algorithm to construct independent set:
• Mark all vertices of degree ≥ 9
• While there is an unmarked vertex
 • Let v be an unmarked vertex
 • Add v to the independent set
 • Mark v and all its neighbors
• Can be implemented in $O(n)$ time: Keep list of unmarked vertices, and store the triangulation in a data structure that allows finding neighbors in $O(1)$ time.
Independent Set Lemma

Still need to prove existence of large independent set.

• Euler’s formula for a triangulated planar graph on n vertices:
 \[\text{\#edges} = 3n - 6 \]

• Sum over vertex degrees:
 \[\sum_v \text{deg}(v) = 2 \text{\#edges} = 6n - 12 < 6n \]

• **Claim:** At least $n/2$ vertices have degree ≤ 8.
 Proof: By contradiction. So, suppose otherwise.
 \[\rightarrow n/2 \text{ vertices have degree} \geq 9. \text{ The remaining have degree} \geq 3. \]
 \[\rightarrow \text{The sum of the degrees is} \geq 9 \frac{n}{2} + 3 \frac{n}{2} = 6n. \text{ Contradiction.} \]

• In the beginning of the algorithm, at least $n/2$ nodes are unmarked. Each picked vertex v marks ≤ 8 other vertices, so including itself 9.

• Therefore, the while loop can be repeated at least $n/18$ times.

• This shows that there is an independent set of size at least $n/18$ in which each node has degree ≤ 8.

\[\square \]
Summing Up

- Kirkpatrick’s point location data structure needs $O(n \log n)$ preprocessing time, $O(n)$ space, and has $O(\log n)$ query time.
- It involves high constant factors though.

- Next we will discuss a randomized point location scheme (based on trapezoidal maps) which is more efficient in practice.
Trapezoidal map

- **Input:** Set $S = \{s_1, \ldots, s_n\}$ of non-intersecting line segments.
- **Query:** Given point p, report the segment directly above p.

Create trapezoidal map by shooting two rays vertically (up and down) from each vertex until a segment is hit. [Assume no segment is vertical.]

- **Trapezoidal map** = rays + segments
- Enclose S into bounding box to avoid infinite rays.
- All faces in subdivision are trapezoids, with vertical sides.
- The trapezoidal map has at most $6n+4$ vertices and $3n+1$ trapezoids:
 - Each vertex shoots two rays, so, $2n(1+2)$ vertices, plus 4 for the bounding box.
 - Count trapezoids by vertex that creates its left boundary segment: Corner of box for one trapezoid, right segment endpoint for one trapezoid, left segment endpoint for at most two trapezoids. $\rightarrow 3n+1$
Construction

- Randomized incremental construction
- Start with outer box which is a single trapezoid. Then add one segment s_i at a time, in random order.
Construction

- Let $S_i = \{s_1, ..., s_i\}$, and let T_i be the trapezoidal map for S_i.
- Add s_i to T_{i-1}.
- Find trapezoid containing left endpoint of s_i. [Point location; details later]
- Thread s_i through T_{i-1}, by walking through it and identifying trapezoids that are cut.
- “Fix trapezoids up” by shooting rays from left and right endpoint of s_i and trim earlier rays that are cut by s_i.
Analysis

Observation: The final trapezoidal map T_i does not depend on the order in which the segments were inserted.

Lemma: Ignoring the time spent for point location, the insertion of s_i takes $O(k_i)$ time, where k_i is the number of newly created trapezoids.

Proof:

• Let k be the number of ray shots interrupted by s_i.
• Each endpoint of s_i shoots two rays
 \[k_i = k + 4 \] rays need to be processed
• If $k=0$, we get 4 new trapezoids.
• Create a new trapezoid for each interrupted ray shot; takes $O(1)$ time with DCEL
Analysis

Total runtime (without point location): $\sum_{i=1}^{n} k_i$

- Best case: $k_i = O(1)$, so $\sum_{i=1}^{n} k_i = O(n)$.
- Worst case: $k_i = O(i)$, so $\sum_{i=1}^{n} k_i = O(n^2)$.

- Insert segments in *random* order:
 - $\Pi = \{\text{all possible permutations/orders of segments}\}$; $|\Pi| = n!$ for n segments
 - $k_i = k_i(\pi)$ for some random order $\pi \in \Pi$
 - We will show that $E(k_i) = O(1)$
 - \Rightarrow Expected runtime $E(T) = E(\sum_{i=1}^{n} k_i) = \sum_{i=1}^{n} E(k_i) = O(\sum_{i=1}^{n} 1) = O(n)$
Analysis

Theorem: $E(k_i) = O(1)$, where k_i is the number of newly created trapezoids created upon insertion of s_i, and the expectation is taken over all segment permutations of $S_i = \{s_1, ..., s_i\}$.

Proof:

• T_i does not depend on the order in which segments $s_1, ..., s_i$ were added.
• Of $s_1, ..., s_i$, what is the probability that a particular segment s was added last?
• $1/i$
• We want to compute the number of trapezoids that would have been created if s was added last.
Analysis

• A trapezoid Δ depends on s if Δ would be created by s if s was added last.
• We want to count trapezoids that depend on s, and then compute the expectation over all choices of s.
• Let $\delta(\Delta,s)=1$, if Δ depends on s. And $\delta(\Delta,s)=0$, otherwise.

- Random variable $k_i(s)=\#\text{trapezoids added when } s \text{ was inserted last in } S_i$.
- $k_i(s)=\sum_{\Delta \in T_i} \delta(\Delta, s)$
- $E(k_i)=\sum_{s \in S_i} k_i(s) P(s) = \frac{1}{i} \sum_{s \in S_i} k_i(s) = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T_i} \delta(\Delta, s)$
Analysis

- Random variable \(k_i(s) = \# \text{trapezoids added when } s \text{ was inserted last in } S_i \).
- \(k_i(s) = \sum_{\Delta \in T_i} \delta(\Delta, s) \)
- \(E(k_i) = \sum_{s \in S_i} k_i(s) P(s) = \frac{1}{i} \sum_{s \in S_i} k_i(s) = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T_i} \delta(\Delta, s) \)
- \(= \frac{1}{i} \sum_{\Delta \in T_i} \sum_{s \in S_i} \delta(\Delta, s) \)
- How many segments does \(\Delta \) depend on? At most 4.
- Also, \(T_i \) has \(O(i) \) trapezoids (by Euler’s formula).
- \(E(k_i) = \frac{1}{i} \sum_{\Delta \in T_i} \sum_{s \in S_i} \delta(\Delta, s) = \frac{1}{i} \sum_{\Delta \in T_i} 4 = \frac{1}{i} 4|T_i| = \frac{1}{i} O(i) = O(1) \)
Point Location

- Build a point location data structure; a DAG, similar to Kirkpatrick’s
- DAG has two types of internal nodes:
 - x-node (circle): contains the x-coordinate of a segment endpoint.
 - y-node (hexagon): pointer to a segment
- The DAG has one leaf for each trapezoid.

- Children of x-node: Space to the left and right of x-coordinate
- Children of y-node: Space above and below the segment
- y-node is only searched when the query’s x-coordinate is within the segment’s span.
- ⇒ Encodes trapezoidal decomposition and enables point location during construction.
Construction

• Incremental construction during trapezoidal map construction.
• When a segment s is added, modify the DAG.
 • Some leaves will be replaced by new subtrees.
• Each old trapezoid will overlap $O(1)$ new trapezoids.
• Each trapezoid appears exactly once as a leaf.

• Changes are highly local.
• If s passes entirely through trapezoid t, then t is replaced with two new trapezoids t' and t''.
 • Add new y-node as parent of t' and t'', in order to facilitate search later.
• If an endpoint of s lies in trapezoid t, then add an x-node to decide left/right and a y-node for the segment.
Inserting a Segment

• Insert segment s_3.
Analysis

• **Space:** Expected $O(n)$
 - Size of data structure = number of trapezoids = $O(n)$ in expectation, since an expected $O(1)$ trapezoids are created during segment insertion

• **Query time:** Expected $O(\log n)$

• **Construction time:** Expected $O(n \log n)$ follows from query time

• **Proof** that the query time is expected $O(\log n)$:
 - Fix a query point Q.
 - Consider how Q moves through the trapezoidal map as it is being constructed as new segments are inserted.
 - Search complexity = number of trapezoids encountered by Q
Query Time

- Let Δ_i be the trapezoid containing Q after the insertion of ith segment.
- If $\Delta_i = \Delta_{i-1}$ then the insertion does not affect Q’s trapezoid (E.g., $Q \in B$).
- If $\Delta_i \neq \Delta_{i-1}$ then the insertion deleted Q’s trapezoid, and Q needs to be located among the at most 4 new trapezoids.

- Q could fall 3 levels in the DAG.
Query Time

• Let \(X_i \) be the \# nodes on path created in iteration \(i \), and let \(P_i \) be the probability that there exists a node in iteration \(i \), i.e., \(\Delta_i \neq \Delta_{i-1} \).

• The expected search path length is \(E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) \leq \sum_{i=1}^{n} 3 P_i \) by lin. of expectation and since \(Q \) can drop at most 3 levels.

• **Claim:** \(P_i \leq \frac{4}{i} \).
 - Backwards analysis: Consider deleting segments, instead of inserting.
 - Trapezoid \(\Delta_i \) depends on \(\leq 4 \) segments. The probability that the \(i \)th segment is one of these 4 is \(\leq \frac{4}{i} \).

• The expected search path length is at most

\[
\sum_{i=1}^{n} 3 P_i = \sum_{i=1}^{n} 3 \frac{4}{i} = 12 \sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n)
\]

Harmonic number