11/9/17

Lab Worksheet

1. Bellman-Ford

Run Bellman-Ford's algorithm on the graph below, with source vertex v_0 .

(a) Show all the different stages of the algorithm, including *d*-values for each vertex and the tree edges stored in the predecessor array. Also draw the shortest path tree edges into the graph.

(b) List the shortest paths from v_0 to all other vertices.

2. **MST**

- (a) How many different MSTs does this graph have?
- (b) Run Prim's algorithm on this graph. Similar to question 1 on homework 8 for Dijkstra's algorithm, list all the different stages: The key for each vertex, the priority queue, the vertex extracted from the priority queue, and the predecessor array storing the tree.

3. True or False

For each of these statements indicate whether it is true or false. If a statement is true, prove its correctness. If it is false, provide a counterexample.

- (a) If G has a cycle with a unique heaviest edge e, then e cannot be part of any MST.
- (b) Let e be any edge of minimum weight in G. Then e must be part of some MST.
- (c) The shortest path between two nodes is necessarily part of some MST.