CMPS 2200 - Fall 2017

Probability and Expected Values
 Carola Wenk

Probability

- Let S be a sample space of possible outcomes.
- $E \subseteq S$ is an event
- The (Laplacian) probability of E is defined as $\mathrm{P}(E)=|E||S|$ $\Rightarrow \mathrm{P}(s)=1 /|S|$ for all $s \in S$

Note: This is a special case of a probability distribution. In general $\mathrm{P}(s)$ can be quite arbitrary. For a loaded die the probabilities could be for example $\mathrm{P}(6)=1 / 2$ and $\mathrm{P}(1)=\mathrm{P}(2)=\mathrm{P}(3)=\mathrm{P}(4)=\mathrm{P}(5)=1 / 10$.

Example: Rolling a (six-sided) die

- $S=\{1,2,3,4,5,6\}$
- $\mathrm{P}(2)=\mathrm{P}(\{2\})=1 /|S|=1 / 6$
- Let $E=\{2,6\} \Rightarrow \mathrm{P}(E)=2 / 6=1 / 3=\mathrm{P}($ rolling a 2 or a 6$)$

In general: For any $s \in S$ and any $E \subseteq S$

- $0 \leq \mathrm{P}(s) \leq 1$
- $\sum_{s \in S} \mathrm{P}(s)=1$
- $\mathrm{P}(E)=\sum_{s \in E} \mathrm{P}(s)$

Random Variable

- A random variable X on S is a function from S to \mathbb{R}, $X: S \rightarrow \mathbb{R}$

Example 1: Flip coin three times.

- $S=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
- Let $X(s)=\#$ heads in s

$\Rightarrow X(\mathrm{HHH})=3$
$X(\mathrm{HHT})=X(\mathrm{HTH})=X(\mathrm{THH})=2$ $X(\mathrm{TTH})=X(\mathrm{THT})=X(\mathrm{HTH})=1$ $X(\mathrm{TTT})=0$

Example 2: Play game: Win $\$ 5$ when getting HHH , pay $\$ 1$ otherwise

- Let $Y(s)$ be the win/loss for the outcome s

$$
\begin{aligned}
& \Rightarrow Y(\mathrm{HHH})=5 \\
& Y(\mathrm{HHT})=Y(\mathrm{HTH})=\ldots=-1
\end{aligned}
$$

What is the average win/loss?

Expected Value

- The expected value of a random variable $X: S \rightarrow \mathbb{R}$ is defined as

$$
\mathrm{E}(X)=\sum_{s \in S} \mathrm{P}(s) \cdot X(s)=\sum_{x \in \mathbb{R}} \mathrm{P}(\{X=x\}) \cdot x
$$

Notice the similarity to the arithmetic mean (or average).

Example 2 (continued):

$$
\begin{aligned}
& \mathrm{E}(\mathrm{Y})=\sum_{s \in S} \mathrm{P}(s) \cdot Y(s)=\mathrm{P}(\mathrm{HHH}) \cdot 5+\mathrm{P}(\mathrm{HHT}) \cdot(-1)+\mathrm{P}(\mathrm{HTH}) \cdot(-1)+\mathrm{P}(\mathrm{HTT}) \cdot(-1) \\
&+\mathrm{P}(\mathrm{THH}) \cdot(-1)+\mathrm{P}(\mathrm{THT}) \cdot(-1)+\mathrm{P}(\mathrm{TTH}) \cdot(-1)+\mathrm{P}(\mathrm{TTT}) \cdot(-1) \\
&=\mathrm{P}(\mathrm{HHH}) \cdot 5+\sum_{s \in S} \mathrm{P}(\mathrm{~s}) \cdot(-1)=1 / 2^{3} \cdot 5+7 \cdot 1 / 2^{3} \cdot(-1) \\
&=(5-7) / 2^{3}=-2 / 8=-1 / 4 \\
&=\sum_{y \in \mathbb{R}} \mathrm{P}(\{Y=y\}) \cdot y=\mathrm{P}(\mathrm{HHH}) \cdot 5+\mathrm{P}(\{Y=-1\}) \cdot(-1)=1 / 2^{3} \cdot 5+7 / 2^{3} \cdot(-1)=-1 / 4
\end{aligned}
$$

\Rightarrow The average win/loss is $\mathrm{E}(Y)=-1 / 4$

Theorem (Linearity of Expectation):

Let X, Y be two random variables on S. Then the following holds:

$$
\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)
$$

Proof: $\mathrm{E}(X+Y)=\sum_{s \in S} \mathrm{P}(s) \cdot(X(s)+Y(s))=\sum_{s \in S} \mathrm{P}(s) \cdot X(s)+\sum_{s \in S} \mathrm{P}(s) \cdot Y(s)=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y}) \quad \square$

Randomized algorithms

- Allow random choices during the algorithm
- Sample space $S=$ \{all sequences of random choices $\}$
- The runtime $T: S \rightarrow \mathbf{R}$ is a random variable. The runtime $T(s)$ depends on the particular sequence s of random choices.
\Rightarrow Consider the expected runtime $\mathrm{E}(T)$

