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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems of sizes that are fractions of the 
original problem size.

2. Conquer the subproblems by solving them 
recursively.

3. Combine subproblem solutions.
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
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Merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[ 0 . . n/2 -1])
3. MERGE-SORT (A[ n/2 . . n-1 ])
4. “Merge” the 2 sorted lists.

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size n/2
3. Combine: Linear-time key subroutine MERGE
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Merging two sorted arrays
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of n elements (linear time).
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Analyzing merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[ 0 . . n/2+1])
3. MERGE-SORT (A[ n/2 . . n-1 ])
4. “Merge” the 2 sorted lists.

T(n)
d0
T(n/2)
T(n/2)
dn

Sloppiness: Should be T( n/2 ) + T( n/2 ) , 
but it turns out not to matter asymptotically.
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Recurrence for merge sort

T(n) =
d0 if n = 1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it 
O(n) or O(n2) or O(n3) or …?
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

d0

h = log n

dn

dn

dn

…

#leaves = n d0n
Total dn log n + d0n
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Mergesort Conclusions

• Merge sort runs in (n log n) time.
• (n log n) grows more slowly than (n2).
• Therefore, merge sort asymptotically beats 

insertion sort in the worst case.
• In practice, merge sort beats insertion sort 

for n > 30 or so. (Why not earlier?)
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Recursion-tree method

• A recursion tree models the costs (time) of a 
recursive execution of an algorithm.

• The recursion-tree method can be unreliable, 
just like any method that uses ellipses (…).

• It is good for generating guesses of what the 
runtime could be. 

But: Need to verify that the guess is correct.
→ Induction (substitution method)
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Substitution method

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of 

induction)

The most general method to solve a recurrence 
(prove O and  separately):
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Convex Hull Problem

 Given a set of pins on a pinboard

and a rubber band around them.

How does the rubber band look   
when it snaps tight?

 The convex hull of a point set is 
one of the simplest shape 
approximations for a set of points.
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Convex Hull: Divide & Conquer
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two 
sets A and B:

 A contains the left n/2 points, 

 B contains the right n/2 points 

Recursively compute the convex 
hull of A

Recursively compute the convex 
hull of B

 Merge the two convex hulls

A B
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Merging 
 Find upper and lower tangent

 With those tangents the convex hull 
of AB can be computed from the 
convex hulls of A and the convex hull 
of B in O(n) linear time

A B
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check with 
orientation test

right turn
left turn

Finding the lower tangent 
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both   

convex hulls of A and B do{
while T not lower tangent to 
convex hull of A do{

a=a-1
}
while T not lower tangent to 
convex hull of B do{
b=b+1

}
}

A B
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Convex Hull: Runtime
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two 
sets A and B:

 A contains the left n/2 points, 

 B contains the right n/2 points 

Recursively compute the convex 
hull of A

Recursively compute the convex 
hull of B

 Merge the two convex hulls

O(n log n)  just once

O(1)

T(n/2)

T(n/2)

O(n)
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Convex Hull: Runtime
 Runtime Recurrence:

T(n) = 2 T(n/2) + cn

 Solves to T(n) = (n log n)
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Powering a number

Problem: Compute a n, where n N.

a n =
a n/2  a n/2 if n is even;
a (n–1)/2  a (n–1)/2  a if n is odd.

Divide-and-conquer algorithm: (recursive squaring)

T(n) = T(n/2) + (1)   T(n) = (log n) . 

Naive algorithm: (n).

CMPS 2200 Introduction to Algorithms
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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems of sizes that are fractions of the 
original problem size.

2. Conquer the subproblems by solving them 
recursively.

3. Combine subproblem solutions.

 Runtime recurrences 

CMPS 2200 Introduction to Algorithms
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The master method

The master method applies to recurrences of 
the form

T(n) = a T(n/b) + f (n) , 
where a  1, b > 1, and f is asymptotically 
positive.

CMPS 2200 Introduction to Algorithms
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Example: merge sort
1. Divide: Trivial.
2. Conquer: Recursively sort a=2

subarrays of size n/2=n/b
3. Combine: Linear-time merge, runtime 

f(n)O(n)

T(n) = 2 T(n/2) + O(n)
# subproblems subproblem size work dividing 

and combining

T(n) = a T(n/b) + f(n)
CMPS 2200 Introduction to Algorithms
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Master Theorem
T(n) = a T(n/b) + f (n)

CASE 1:
f (n) = O(nlogba – )  T(n) = (nlogba)
for some >0

CASE 2:
f (n) = (nlogba logkn)  T(n) = (nlogba logk+1n)
for some k≥0

CASE 3:
(i) f (n) = (nlogba + )
for some >0  T(n) = ( f (n))
and (ii) a f (n/b)  c f (n) 
for some c < 1

CMPS 2200 Introduction to Algorithms
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How to apply the theorem
Compare f (n) with nlogba :

1. f (n) = O(nlogba – ) for some constant  > 0.
• f (n) grows polynomially slower than nlogba

(by an n factor).
Solution: T(n) = (nlogba) .

2. f (n) = (nlogba logkn) for some constant k  0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = (nlogba logk+1n) .

CMPS 2200 Introduction to Algorithms
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How to apply the theorem

3. f (n) = (nlogba + ) for some constant  > 0.
• f (n) grows polynomially faster than nlogba (by 

an n factor),
and f (n) satisfies the regularity condition that 
a f (n/b)  c f (n) for some constant c < 1.
Solution: T(n) = ( f (n)) .

Compare f (n) with nlogba :

CMPS 2200 Introduction to Algorithms
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Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
# subproblems subproblem size work dividing 

and combining
nlogba = nlog22 = n1 = n  CASE 2 (k = 0)

 T(n) = (n log n) . 

CMPS 2200 Introduction to Algorithms
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Example: binary search

T(n) = 1 T(n/2) + (1)

# subproblems
subproblem size

work dividing 
and combining

nlogba = nlog21 = n0 = 1  CASE 2 (k = 0)
 T(n) = (log n) . 

CMPS 2200 Introduction to Algorithms
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Master theorem: Examples

Ex. T(n) = 4T(n/2) + sqrt(n)
a = 4, b = 2  nlogba = n2; f (n) = sqrt(n).
CASE 1: f (n) = O(n2 – ) for  = 1.5.
 T(n) = (n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2  nlogba = n2; f (n) = n2.
CASE 2: f (n) = (n2log0n), that is, k = 0.
 T(n) = (n2log n).

CMPS 2200 Introduction to Algorithms
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Master theorem: Examples
Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = (n2 + ) for  = 1
and 4(n/2)3  cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4, b = 2  nlogba = n2; f (n) = n2/logn.
Master method does not apply.  In particular, 
for every constant  > 0, we have log n  o(n).

CMPS 2200 Introduction to Algorithms
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Matrix multiplication



























































nnnn

n

n

nnnn

n

n

nnnn

n

n

bbb

bbb
bbb

aaa

aaa
aaa

ccc

ccc
ccc

























21

22221

11211

21

22221

11211

21

22221

11211





n

k
kjikij bac

1

Input: A = [aij], B = [bij].
Output: C = [cij] = AB. i, j = 1, 2,… , n.
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Standard algorithm

for i  1 to n
do for j  1 to n

do cij  0
for k  1 to n

do cij  cij + aik bkj

Running time = (n3)

CMPS 2200 Introduction to Algorithms
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Divide-and-conquer algorithm

nn matrix = 22 matrix of (n/2)n/2) submatrices:
IDEA:

















hg
fe

dc
ba

ut
sr

C = A  B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g
u = c·f +d·h

8 recursive mults of (n/2)n/2) submatrices 
4 adds of (n/2)n/2) submatrices 

CMPS 2200 Introduction to Algorithms
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Matrix multiplication:
Analysis of D&C algorithm

No better than the ordinary matrix 
multiplication algorithm.

# submatrices
submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + (n2)

nlogba = nlog28 = n3  CASE 1  T(n) = (n3) 

CMPS 2200 Introduction to Algorithms
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7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

Strassen’s idea
• Multiply 22 matrices with only 7 recursive mults. 

P1 = a  ( f – h)
P2 = (a + b)  h
P3 = (c + d)  e
P4 = d  (g – e)
P5 = (a + d)  (e + h)
P6 = (b – d)  (g + h)
P7 = (a – c)  (e + f )

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

CMPS 2200 Introduction to Algorithms
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Strassen’s idea
• Multiply 22 matrices with only 7 recursive mults. 

P1 = a  ( f – h)
P2 = (a + b)  h
P3 = (c + d)  e
P4 = d  (g – e)
P5 = (a + d)  (e + h)
P6 = (b – d)  (g + h)
P7 = (a – c)  (e + f )

r = P5 + P4 – P2 + P6
= (a + d) (e + h) 

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh 
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg
CMPS 2200 Introduction to Algorithms
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)(n/2) submatrices.  Form P-terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)(n/2) submatrices.

T(n) = 7 T(n/2) + (n2)
nlogba = nlog27  n2.81  CASE 1  T(n) = (nlog 7)

CMPS 2200 Introduction to Algorithms
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Analysis of Strassen
T(n) = 7 T(n/2) + (n2)

Solves to T(n) = (nlog 7)

Best to date (of theoretical interest only): (n2.376).

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n  30 or so.

CMPS 2200 Introduction to Algorithms
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Conclusion

• Divide and conquer is just one of several 
powerful techniques for algorithm design. 

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 
method .

• Can lead to more efficient algorithms

CMPS 2200 Introduction to Algorithms


