
9/22/17 CMPS 2200 Introduction to Algorithms 1

CMPS 2200 – Fall 2017

Divide-and-Conquer
Carola Wenk

Slides courtesy of Charles Leiserson
with changes and additions by Carola Wenk

9/22/17 2

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the
original problem size.

2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.

CMPS 2200 Introduction to Algorithms

9/22/17 3

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CMPS 2200 Introduction to Algorithms

9/22/17 4

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CMPS 2200 Introduction to Algorithms

9/22/17 5

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CMPS 2200 Introduction to Algorithms

9/22/17 6

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CMPS 2200 Introduction to Algorithms

9/22/17 7

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CMPS 2200 Introduction to Algorithms

9/22/17 8

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

CMPS 2200 Introduction to Algorithms

9/22/17 CMPS 2200 Introduction to Algorithms 9

Merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[0 . . n/2 -1])
3. MERGE-SORT (A[n/2 . . n-1])
4. “Merge” the 2 sorted lists.

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size n/2
3. Combine: Linear-time key subroutine MERGE

9/22/17 CMPS 2200 Introduction to Algorithms 10

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time dn (n) to merge a total
of n elements (linear time).

9/22/17 CMPS 2200 Introduction to Algorithms 11

Analyzing merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[0 . . n/2+1])
3. MERGE-SORT (A[n/2 . . n-1])
4. “Merge” the 2 sorted lists.

T(n)
d0
T(n/2)
T(n/2)
dn

Sloppiness: Should be T(n/2) + T(n/2) ,
but it turns out not to matter asymptotically.

9/22/17 CMPS 2200 Introduction to Algorithms 12

Recurrence for merge sort

T(n) =
d0 if n = 1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it
O(n) or O(n2) or O(n3) or …?

9/22/17 CMPS 2200 Introduction to Algorithms 13

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)

9/22/17 CMPS 2200 Introduction to Algorithms 14

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn

9/22/17 CMPS 2200 Introduction to Algorithms 15

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2

9/22/17 CMPS 2200 Introduction to Algorithms 16

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

d0

h = log n

dn

dn

dn

…

#leaves = n d0n
Total dn log n + d0n

9/22/17 CMPS 2200 Introduction to Algorithms 17

Mergesort Conclusions

• Merge sort runs in (n log n) time.
• (n log n) grows more slowly than (n2).
• Therefore, merge sort asymptotically beats

insertion sort in the worst case.
• In practice, merge sort beats insertion sort

for n > 30 or so. (Why not earlier?)

9/22/17 CMPS 2200 Introduction to Algorithms 18

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• It is good for generating guesses of what the
runtime could be.

But: Need to verify that the guess is correct.
→ Induction (substitution method)

9/22/17 CMPS 2200 Introduction to Algorithms 19

Substitution method

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of

induction)

The most general method to solve a recurrence
(prove O and separately):

9/22/17 CMPS 2200 Introduction to Algorithms 20

Convex Hull Problem

 Given a set of pins on a pinboard

and a rubber band around them.

How does the rubber band look
when it snaps tight?

 The convex hull of a point set is
one of the simplest shape
approximations for a set of points.

9/22/17 CMPS 2200 Introduction to Algorithms 21

Convex Hull: Divide & Conquer
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two
sets A and B:

 A contains the left n/2 points,

 B contains the right n/2 points

Recursively compute the convex
hull of A

Recursively compute the convex
hull of B

 Merge the two convex hulls

A B

9/22/17 CMPS 2200 Introduction to Algorithms 22

Merging
 Find upper and lower tangent

 With those tangents the convex hull
of AB can be computed from the
convex hulls of A and the convex hull
of B in O(n) linear time

A B

9/22/17 CMPS 2200 Introduction to Algorithms 23

check with
orientation test

right turn
left turn

Finding the lower tangent
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both

convex hulls of A and B do{
while T not lower tangent to
convex hull of A do{

a=a-1
}
while T not lower tangent to
convex hull of B do{
b=b+1

}
}

A B
0

a=2

1

5

3

4

0

1

2

3

4=b

5

6
7

9/22/17 CMPS 2200 Introduction to Algorithms 24

Convex Hull: Runtime
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two
sets A and B:

 A contains the left n/2 points,

 B contains the right n/2 points

Recursively compute the convex
hull of A

Recursively compute the convex
hull of B

 Merge the two convex hulls

O(n log n) just once

O(1)

T(n/2)

T(n/2)

O(n)

9/22/17 CMPS 2200 Introduction to Algorithms 25

Convex Hull: Runtime
 Runtime Recurrence:

T(n) = 2 T(n/2) + cn

 Solves to T(n) = (n log n)

9/22/17 26

Powering a number

Problem: Compute a n, where n N.

a n =
a n/2 a n/2 if n is even;
a (n–1)/2 a (n–1)/2 a if n is odd.

Divide-and-conquer algorithm: (recursive squaring)

T(n) = T(n/2) + (1) T(n) = (log n) .

Naive algorithm: (n).

CMPS 2200 Introduction to Algorithms

9/22/17 27

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the
original problem size.

2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.

 Runtime recurrences

CMPS 2200 Introduction to Algorithms

9/22/17 28

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a 1, b > 1, and f is asymptotically
positive.

CMPS 2200 Introduction to Algorithms

9/22/17 29

Example: merge sort
1. Divide: Trivial.
2. Conquer: Recursively sort a=2

subarrays of size n/2=n/b
3. Combine: Linear-time merge, runtime

f(n)O(n)

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining

T(n) = a T(n/b) + f(n)
CMPS 2200 Introduction to Algorithms

9/22/17 30

Master Theorem
T(n) = a T(n/b) + f (n)

CASE 1:
f (n) = O(nlogba –) T(n) = (nlogba)
for some >0

CASE 2:
f (n) = (nlogba logkn) T(n) = (nlogba logk+1n)
for some k≥0

CASE 3:
(i) f (n) = (nlogba +)
for some >0 T(n) = (f (n))
and (ii) a f (n/b) c f (n)
for some c < 1

CMPS 2200 Introduction to Algorithms

9/22/17 31

How to apply the theorem
Compare f (n) with nlogba :

1. f (n) = O(nlogba –) for some constant > 0.
• f (n) grows polynomially slower than nlogba

(by an n factor).
Solution: T(n) = (nlogba) .

2. f (n) = (nlogba logkn) for some constant k 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = (nlogba logk+1n) .

CMPS 2200 Introduction to Algorithms

9/22/17 32

How to apply the theorem

3. f (n) = (nlogba +) for some constant > 0.
• f (n) grows polynomially faster than nlogba (by

an n factor),
and f (n) satisfies the regularity condition that
a f (n/b) c f (n) for some constant c < 1.
Solution: T(n) = (f (n)) .

Compare f (n) with nlogba :

CMPS 2200 Introduction to Algorithms

9/22/17 33

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining
nlogba = nlog22 = n1 = n CASE 2 (k = 0)

 T(n) = (n log n) .

CMPS 2200 Introduction to Algorithms

9/22/17 34

Example: binary search

T(n) = 1 T(n/2) + (1)

subproblems
subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1 CASE 2 (k = 0)
 T(n) = (log n) .

CMPS 2200 Introduction to Algorithms

9/22/17 35

Master theorem: Examples

Ex. T(n) = 4T(n/2) + sqrt(n)
a = 4, b = 2 nlogba = n2; f (n) = sqrt(n).
CASE 1: f (n) = O(n2 –) for = 1.5.
 T(n) = (n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 nlogba = n2; f (n) = n2.
CASE 2: f (n) = (n2log0n), that is, k = 0.
 T(n) = (n2log n).

CMPS 2200 Introduction to Algorithms

9/22/17 36

Master theorem: Examples
Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2 nlogba = n2; f (n) = n3.
CASE 3: f (n) = (n2 +) for = 1
and 4(n/2)3 cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4, b = 2 nlogba = n2; f (n) = n2/logn.
Master method does not apply. In particular,
for every constant > 0, we have log n o(n).

CMPS 2200 Introduction to Algorithms

9/22/17 37

Matrix multiplication

nnnn

n

n

nnnn

n

n

nnnn

n

n

bbb

bbb
bbb

aaa

aaa
aaa

ccc

ccc
ccc

21

22221

11211

21

22221

11211

21

22221

11211

n

k
kjikij bac

1

Input: A = [aij], B = [bij].
Output: C = [cij] = AB. i, j = 1, 2,… , n.

CMPS 2200 Introduction to Algorithms

9/22/17 38

Standard algorithm

for i 1 to n
do for j 1 to n

do cij 0
for k 1 to n

do cij cij + aik bkj

Running time = (n3)

CMPS 2200 Introduction to Algorithms

9/22/17 39

Divide-and-conquer algorithm

nn matrix = 22 matrix of (n/2)n/2) submatrices:
IDEA:

hg
fe

dc
ba

ut
sr

C = A B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g
u = c·f +d·h

8 recursive mults of (n/2)n/2) submatrices
4 adds of (n/2)n/2) submatrices

CMPS 2200 Introduction to Algorithms

9/22/17 40

Matrix multiplication:
Analysis of D&C algorithm

No better than the ordinary matrix
multiplication algorithm.

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) + (n2)

nlogba = nlog28 = n3 CASE 1 T(n) = (n3)

CMPS 2200 Introduction to Algorithms

9/22/17 41

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

Strassen’s idea
• Multiply 22 matrices with only 7 recursive mults.

P1 = a (f – h)
P2 = (a + b) h
P3 = (c + d) e
P4 = d (g – e)
P5 = (a + d) (e + h)
P6 = (b – d) (g + h)
P7 = (a – c) (e + f)

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

CMPS 2200 Introduction to Algorithms

9/22/17 42

Strassen’s idea
• Multiply 22 matrices with only 7 recursive mults.

P1 = a (f – h)
P2 = (a + b) h
P3 = (c + d) e
P4 = d (g – e)
P5 = (a + d) (e + h)
P6 = (b – d) (g + h)
P7 = (a – c) (e + f)

r = P5 + P4 – P2 + P6
= (a + d) (e + h)

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg
CMPS 2200 Introduction to Algorithms

9/22/17 43

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)(n/2) submatrices. Form P-terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)(n/2) submatrices.

T(n) = 7 T(n/2) + (n2)
nlogba = nlog27 n2.81 CASE 1 T(n) = (nlog 7)

CMPS 2200 Introduction to Algorithms

9/22/17 44

Analysis of Strassen
T(n) = 7 T(n/2) + (n2)

Solves to T(n) = (nlog 7)

Best to date (of theoretical interest only): (n2.376).

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n 30 or so.

CMPS 2200 Introduction to Algorithms

9/22/17 45

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method .

• Can lead to more efficient algorithms

CMPS 2200 Introduction to Algorithms

