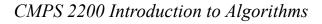
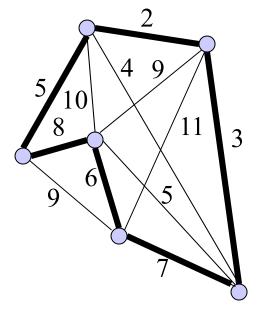
CMPS 2200 – Fall 2017

P and NP (Millenium problem)

Carola Wenk

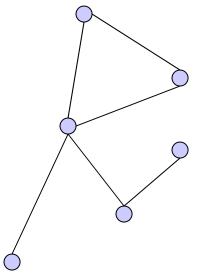
Slides courtesy of Piotr Indyk with additions by Carola Wenk


CMPS 2200 Introduction to Algorithms


We have seen so far

- Algorithms for various problems
 - Running times $O(nm^2), O(n^2), O(n \log n),$ O(n), etc.
 - I.e., polynomial in the input size
- Can we solve all (or most of) interesting problems in polynomial time ?
- Not really...

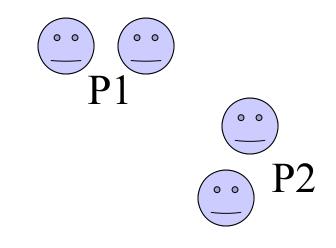
Example difficult problem


- Traveling Salesperson Problem (TSP; optimization variant)
 - Input: Undirected graph with weights on edges
 - Output: Shortest tour that visits each vertex exactly once
- Best known algorithm: $O(n \ 2^n)$ time.

Another difficult problem

- Clique (optimization variant):
 - **Input:** Undirected graph G=(V,E)
 - Output: Largest subset C of V such that every pair of vertices in C has an edge between them (C is called a *clique*)
- Best known algorithm:
 O(n 2ⁿ) time

What can we do?


- Spend more time designing algorithms for those problems
 - People tried for a few decades, no luck
- Prove there is **no** polynomial time algorithm for those problems
 - Would be great
 - Seems *really* difficult
 - Best lower bounds for "natural" problems:
 - $\Omega(n^2)$ for restricted computational models
 - 4.5*n* for unrestricted computational models

What else can we do?

- Show that those hard problems are essentially equivalent. I.e., if we can solve one of them in polynomial time, then all others can be solved in polynomial time as well.
- Works for at least 10 000 hard problems

The benefits of equivalence

- Combines research efforts
- If one problem has a polynomial time solution, then all of them do
- More realistically: Once an exponential lower bound is shown for one problem, it holds for all of them

P3

CMPS 2200 Introduction to Algorithms

Summing up

- If we show that a problem ∏ is equivalent to ten thousand other well studied problems without efficient algorithms, then we get a very strong evidence that ∏ is hard.
- We need to:
 - 1. Identify the class of problems of interest \rightarrow Decision problems, NP
 - 2. Define the notion of equivalence \rightarrow Polynomial-time reductions
 - 3. Prove the equivalence(s)

Decision Problem

- Decision problems: answer YES or NO.
- Example: Search Problem Π_{Search}
 Given an unsorted set S of *n* numbers and a number *key*, is *key* contained in S?
- Input is *x*=(S,*key*)
- Possible algorithms that solve $\Pi_{\text{Search}}(x)$:
 - $-A_1(x)$: Linear search algorithm. O(n) time
 - $A_2(x)$: Sort the array and then perform binary search. O($n \log n$) time
 - $A_3(x)$: Compute all possible subsets of S (2ⁿ many) and check each subset if it contains key. $O(n2^n)$ time.

CMPS 2200 Introduction to Algorithms

Decision problem vs. optimization problem

3 variants of Clique:

- **1.** Input: Undirected graph G=(V,E), and an integer $k \ge 0$. Output: Does *G* contain a clique *C* such that $|C| \ge k$?
- 2. Input: Undirected graph G=(V,E)Output: Largest integer k such that G contains a clique C with |C|=k.
- **3.** Input: Undirected graph G=(V,E)Output: Largest clique *C* of *V*.

3. is harder than **2.** is harder than **1.** So, if we reason about the decision problem (**1.**), and can show that it is hard, then the others are hard as well. Also, every algorithm for **3.** can solve **2.** and **1.** as well.

Decision problem vs. optimization problem (cont.)

Theorem:

- a) If 1. can be solved in polynomial time, then 2. can be solved in polynomial time.
- b) If **2.** can be solved in polynomial time, then **3.** can be solved in polynomial time.

Proof:

- a) Run 1. for values $k = 1 \dots n$. Instead of linear search one could also do binary search.
- b) Run 2. to find the size k_{opt} of a largest clique in *G*. Now check one edge after the other. Remove one edge from G, compute the new size of the largest clique in this new graph. If it is still k_{opt} then this edge is not necessary for a clique. If it is less than k_{opt} then it is part of the clique.

Class of problems: NP

- Decision problems: answer YES or NO. E.g.,"is there a tour of length ≤ *K*"?
- Solvable in *non-deterministic polynomial* time:
 - Intuitively: the solution can be verified in polynomial time
 - E.g., if someone gives us a tour T, we can verify in *polynomial* time if T is a tour of length $\leq K$.
- Therefore, the decision variant of TSP is in NP.

Formal definitions of P and NP

• A decision problem \prod is solvable in polynomial time (or $\prod \in P$), if there is a polynomial time algorithm A(.) such that for any input x:

 $\prod(x) = YES \text{ iff } A(x) = YES$

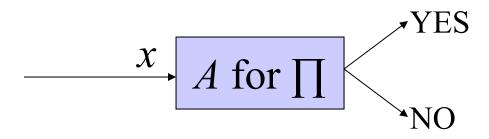
• A decision problem \prod is solvable in nondeterministic polynomial time (or $\prod \in NP$), if there is a polynomial time algorithm A(.,.) such that for any input x:

 $\prod(x)=YES \text{ iff there exists a certificate } y \text{ of size}$ poly(|x|) such that A(x,y)=YES

Examples of problems in NP

- Is "Does there exist a clique in *G* of size ≥*K*" in NP ?
 - Yes: A(x,y) interprets x as (G,K), y as a set C, and checks if all vertices in C are adjacent and if $|C| \ge K$
- Is Sorting in NP ?

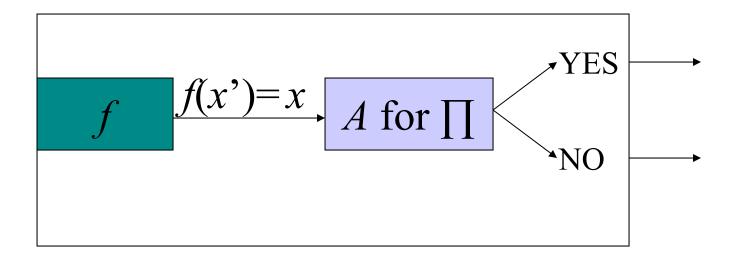
No, not a decision problem.

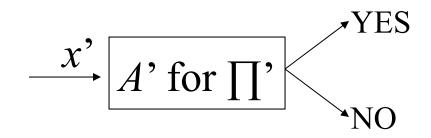

• Is "Sortedness" in NP ?

Yes: ignore *y*, and check if the input *x* is sorted.

Summing up

- If we show that a problem ∏ is equivalent to ten thousand other well studied problems without efficient algorithms, then we get a very strong evidence that ∏ is hard.
- We need to:
 - 1. Identify the class of problems of interest \rightarrow Decision problems, NP
 - 2. Define the notion of equivalence \rightarrow Polynomial-time reductions
 - 3. Prove the equivalence(s)

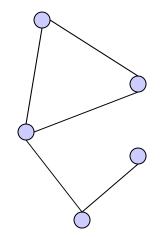

$\prod' \leq \prod$: Reduce \prod' to \prod



CMPS 2200 Introduction to Algorithms

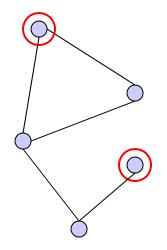
$\prod' \leq \prod$: Reduce \prod' to \prod

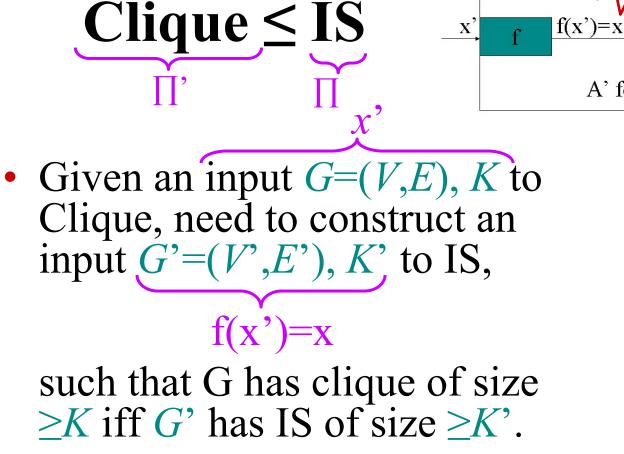
CMPS 2200 Introduction to Algorithms

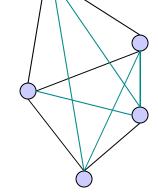

Reductions x' f f(x')=x A for Π NO NO NO A' for Π'

- \prod ' is *polynomial time reducible* to $\prod (\prod' \leq \prod)$ iff
 - 1. there is a polynomial time function **f** that maps inputs x' for \prod ' into inputs x for \prod ,
 - 2. such that for any x':

 $\prod'(x') = \prod(f(x'))$ (or in other words $\prod'(x') = YES$ iff $\prod(f(x') = YES)$


Clique again


- Clique (decision variant):
 - **Input:** Undirected graph G=(V,E), and an integer $K \ge 0$
 - Output: Is there a clique C, i.e., a subset C of V such that every pair of vertices in C has an edge between them, such that $|C| \ge K$?



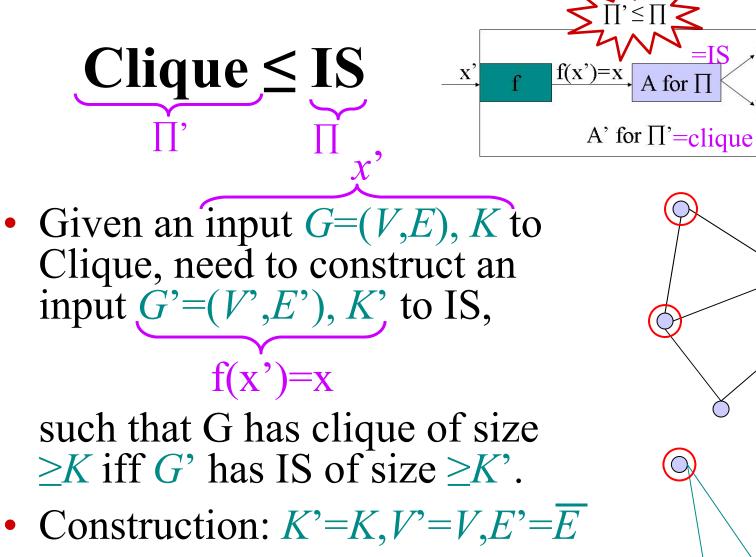
Independent Set (IS)

- Independent Set (decision variant):
 - **Input:** Undirected graph G=(V,E), and an integer $K \ge 0$
 - **Output:** Is there a subset *S* of *V*, $|S| \ge K$ such that **no** pair of vertices in *S* has an edge between them? (*S* is called an *independent set*)

A for Γ

A' for $\prod'=clique$

YES


NO

→YES

*NO

• Construction: $K' = K, V' = V, E' = \overline{E}$

• Reason: *C* is a clique in *G* iff it is an IS in *G*'s complement.

• Reason: *C* is a clique in *G* iff it is an IS in *G*'s complement.

IS

0

YES

NO

→YES

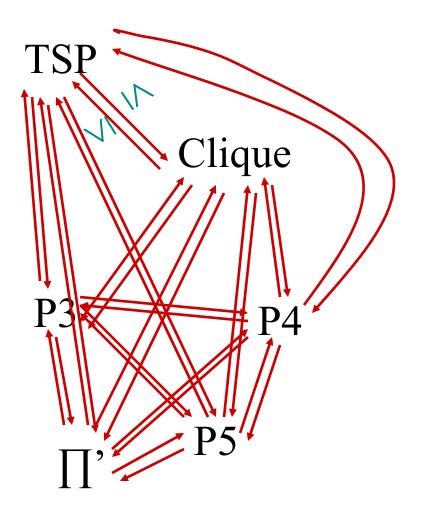
*NO

clique

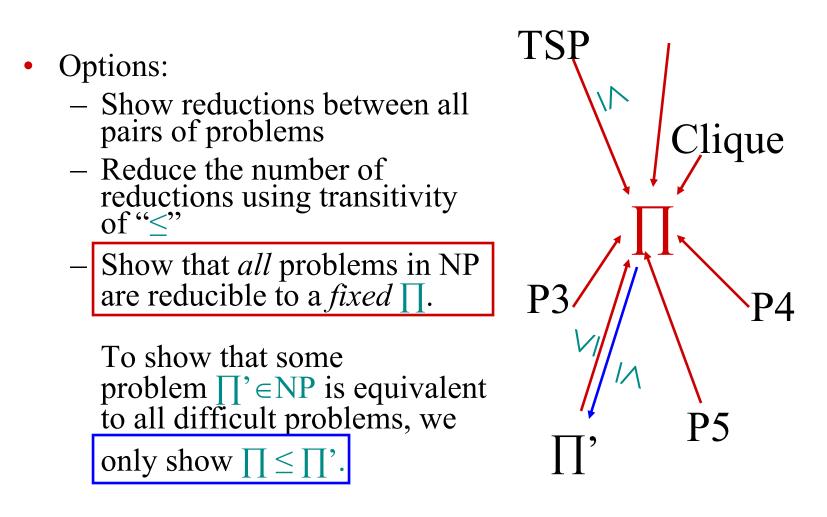
Reductions x' f f(x')=x A for Π NO NOA' for Π'

- \prod ' is *polynomial time reducible* to $\prod (\prod' \leq \prod)$ iff
 - 1. there is a polynomial time function f that maps inputs x' for \prod ' into inputs x for \prod ,
 - 2. such that for any *x*':

 $\prod'(x') = \prod(f(x'))$ (or in other words $\prod'(x') = YES$ iff $\prod(f(x') = YES)$


- Fact 1: if $\prod \in P$ and $\prod' \leq \prod$ then $\prod' \in P$
- Fact 2: if $\prod \in NP$ and $\prod' \leq \prod$ then $\prod' \in NP$
- Fact 3 (transitivity): if $\prod^{\prime\prime} \leq \prod^{\prime}$ and $\prod^{\prime} \leq \prod$ then $\prod^{\prime\prime} \leq \prod$

Recap


- We defined a large class of interesting problems, namely NP
- We have a way of saying that one problem is not harder than another $(\prod' \leq \prod)$
- Our goal: show equivalence between hard problems

Showing equivalence between difficult problems

- Options:
 - Show reductions between all pairs of problems
 - Reduce the number of reductions using transitivity of "≤"

Showing equivalence between difficult problems

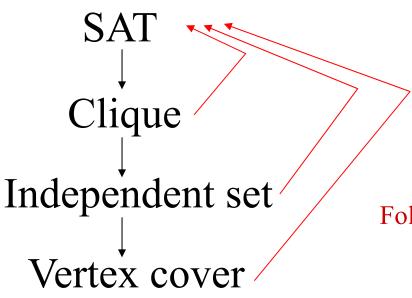
CMPS 2200 Introduction to Algorithms

The first problem \prod

- Satisfiability problem (SAT):
 - Given: a formula φ with *m* clauses over *n* variables, e.g., $x_1 v x_2 v x_5, x_3 v \neg x_5$
 - Check if there exists TRUE/FALSE assignments to the variables that makes the formula satisfiable

SAT is NP-complete

- Fact: SAT \in NP
- Theorem [Cook'71]: For any $\prod' \in NP$ we have $\prod' \leq SAT$.
- Definition: A problem \prod such that for any $\prod' \in NP$ we have $\prod' \leq \prod$, is called *NP-hard*
- Definition: An NP-hard problem that belongs to NP is called *NP-complete*
- Corollary: SAT is NP-complete.

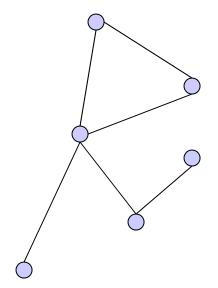

Clique

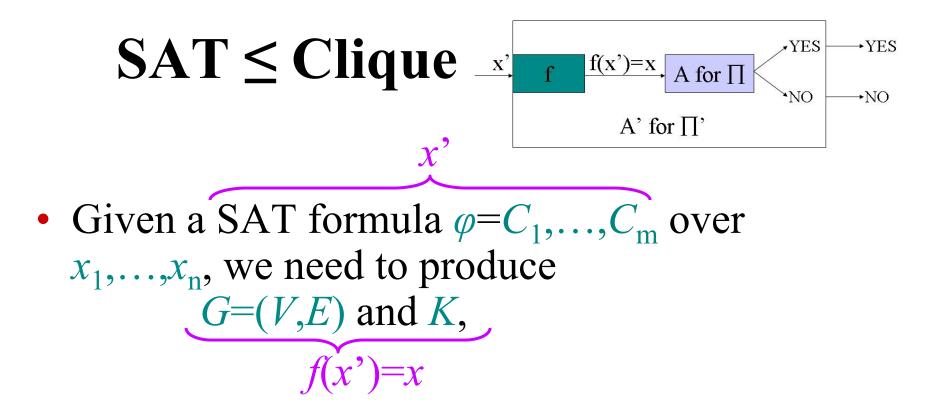
P4

P3

Plan of attack:

• Show that the problems below are in NP, and show a sequence of reductions:


(thanks, Steve ⁽²⁾)


Follow from Cook's Theorem

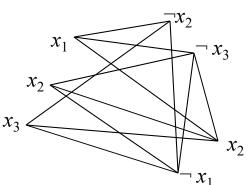
• Conclusion: all of the above problems are NP-complete

Clique again

- Clique (decision variant):
 - **Input:** Undirected graph G=(V,E), and an integer $K \ge 0$
 - **Output:** Is there a clique *C*, i.e., a subset *C* of *V* such that every pair of vertices in *C* has an edge between them, such that $|C| \ge K$?

such that φ satisfiable iff *G* has a clique of size $\geq K$.

• Notation: a literal is either x_i or $\neg x_i$

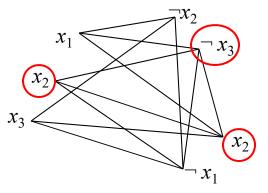

SAT ≤ **Clique reduction**

- For each literal *t* occurring in φ , create a vertex v_t
- Create an edge v_t v_t iff:
 -t and t' are not in the same clause, and
 -t is not the negation of t'

$SAT \leq Clique example$

Edge $v_t - v_t \Leftrightarrow \stackrel{\bullet}{t}$ and t' are not in the same clause, and • t is not the negation of t'

- Formula: $x_1 v x_2 v x_3$, $\neg x_2 v \neg x_3$, $\neg x_1 v x_2$
- Graph:

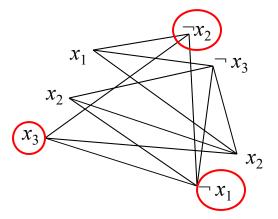


• Claim: φ satisfiable iff *G* has a clique of size $\ge m$

Proof

Edge $v_t - v_{t'} \Leftrightarrow \stackrel{\bullet \ t \text{ and } t'}{\bullet \ t \text{ is not the negation of } t'}$

- " \rightarrow " part of Claim:
 - Take any assignment that satisfies φ .
 - E.g., $x_1 = F$, $x_2 = T$, $x_3 = F$
 - Let the set C contain one satisfied literal per clause
 - -C is a clique

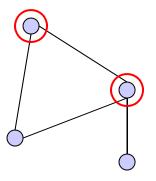

Proof

Edge $v_t - v_{t'} \Leftrightarrow \stackrel{\bullet}{t}$ and t' are not in the same clause, and • t is not the negation of t'

- "←" part of Claim:
 - Take any clique C of size $\geq m$ (i.e., = m)
 - Create a set of equations that satisfies selected literals.

E.g., $x_3 = T$, $x_2 = F$, $x_1 = F$

- The set of equations is consistent and the solution satisfies φ



Altogether

- We constructed a reduction that maps:
 - -YES inputs to SAT to YES inputs to Clique
 - -NO inputs to SAT to NO inputs to Clique
- The reduction works in polynomial time
- Therefore, $SAT \leq Clique \rightarrow Clique NP$ -hard
- Clique is in NP \rightarrow Clique is NP-complete

Vertex cover (VC)

- Input: undirected graph G=(V,E), and $K\geq 0$
- Output: is there a subset *C* of *V*, $|C| \le K$, such that each edge in *E* is incident to at least one vertex in *C*.

 $IS \leq VC$ $\Pi' \qquad f \qquad f(x')=x \qquad A \text{ for } \Pi'$ $A' \text{ for } \Pi'$ G' = (V', E'), K' to VC, such that f(x')=x $G \text{ has an } IS \text{ of size } \geq K \text{ iff } G' \text{ has } VC$

of size $\leq K'$.

- Construction: V'=V, E'=E, K'=|V|-K
- Reason: *S* is an IS in *G* iff *V*-*S* is a VC in *G*.

YES

*NO

→YES

→NO