
CMPS 2200 Intro. to Algorithms 1

CMPS 2200 – Fall 17

Minimum Spanning Trees
Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

CMPS 2200 Intro. to Algorithms 2

Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : E  R.
• For simplicity, assume that all edge weights are

distinct.





Tvu

vuwTw
),(

),()(.

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

CMPS 2200 Intro. to Algorithms 3

Example of MST

6 12
5

14

3

8

10

15

9

7

CMPS 2200 Intro. to Algorithms 4

Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

Theorem [Cut property]. Let G = (V, E)
and let A  V. Suppose that (u, v)  E is the
least-weight edge connecting A to V \ A.
Then, (u, v) is contained in an MST T of G.

CMPS 2200 Intro. to Algorithms 5

Proof of theorem
Proof. Suppose (u, v)  T. Cut and paste.

 A
 V \ A

T:

u

v

(u, v) = least-weight edge
connecting A to V \ A

CMPS 2200 Intro. to Algorithms 6

Proof of theorem
Proof. Suppose (u, v)  T. Cut and paste.

 A
 V \ A

T:

u

Consider the unique simple path from u to v in T.

(u, v) = least-weight edge
connecting A to V \ A

v

CMPS 2200 Intro. to Algorithms 7

Proof of theorem
Proof. Suppose (u, v)  T. Cut and paste.

 A
 V \ A

T:

u
(u, v) = least-weight edge
connecting A to V \ A

v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V \ A.

CMPS 2200 Intro. to Algorithms 8

Proof of theorem
Proof. Suppose (u, v)  T. Cut and paste.

 A
 V \ A

T :

u
(u, v) = least-weight edge
connecting A to V \ A

v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V \ A.
A lighter-weight spanning tree than T results.

CMPS 2200 Intro. to Algorithms 9

Prim’s algorithm
IDEA: Maintain V \ A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q  V
key[v]  for all v  V
key[s]  0 for some arbitrary s  V
while Q  

do u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v) DECREASE-KEY

[v]  u

At the end, {(v, [v])} forms the MST edges.

Dijkstra:
while Q   do

u  EXTRACT-MIN(Q)
S  S  {u}
for each v  Adj[u] do

if d[v] > d[u] + w(u, v) then
d[v]  d[u] + w(u, v)

CMPS 2200 Intro. to Algorithms 10

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 11

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 12

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 13

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 14

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 15

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 16

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 17

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 18

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 19

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 20

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 21

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 22

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 2200 Intro. to Algorithms 23

Handshaking Lemma (|E|) implicit DECREASE-KEY’s.

Q  V
key[v]  for all v  V
key[s]  0 for some arbitrary s  V
while Q  

do u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)

[v]  u

Analysis of Prim

degree(u)
times

|V |
times

(|V|)
total

Time = (|V|)·TEXTRACT-MIN + (|E|)·TDECREASE-KEY

CMPS 2200 Intro. to Algorithms 24

Analysis of Prim (continued)

Time = (|V|)·TEXTRACT-MIN + (|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(|V|) O(1) O(|V|2)
binary
heap O(log |V|) O(log |V|) O(|E| log |V|)

Fibonacci
heap

O(log |V|)
amortized

O(1)
amortized

O(|E| + |V| log |V|)
worst case

CMPS 2200 Intro. to Algorithms 25

Kruskal’s algorithm
IDEA (again greedy):
Repeatedly pick edge with smallest weight as long as it
does not form a cycle.

• The algorithm creates a set of trees (a forest)
• During the algorithm the added edges merge the trees
together, such that in the end only one tree remains

• Correctness: Next edge e connects two components
T1, T2. It is the lightest edge which does not produce a
cycle, hence it is also the lightest edge between T1 and
V\T1 and therefore satisfies the cut property.

CMPS 2200 Intro. to Algorithms 26

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges

Every node is a single tree.

S={ {a},{b},{c},{d},{e}
{f},{g},{h} }

a set repr.

CMPS 2200 Intro. to Algorithms 27

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges

Edge 3 merged two singleton trees.

S={ {a},{b},{c},{d},{f}
{g}, {e, h} }

a set repr.

CMPS 2200 Intro. to Algorithms 28

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {a},{d},{f}, {g}

{e, h}, {b, c} }
a set repr.

CMPS 2200 Intro. to Algorithms 29

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {d},{f}, {g}

{e, h}, {a, b, c} }
a set repr.

CMPS 2200 Intro. to Algorithms 30

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {d}, {g}

{e, h}, {a, b, c, f} }
a set repr.

CMPS 2200 Intro. to Algorithms 31

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {d}, {g}

{e, h, a, b, c, f} }

Edge 8 merged the two bigger trees.

a set repr.

CMPS 2200 Intro. to Algorithms 32

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {g}

{e, h, a, b, c, f, d} }
a set repr.

CMPS 2200 Intro. to Algorithms 33

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges

Skip edge 10 as it would cause a cycle.

S={ {g}
{e, h, a, b, c, f, d} }

a set repr.

CMPS 2200 Intro. to Algorithms 34

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges

Skip edge 12 as it would cause a cycle.

S={ {g}
{e, h, a, b, c, f, d} }

a set repr.

CMPS 2200 Intro. to Algorithms 35

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges

Skip edge 14 as it would cause a cycle.

S={ {g}
{e, h, a, b, c, f, d} }

a set repr.

CMPS 2200 Intro. to Algorithms 36

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={{e, h, a, b, c, f, d, g} }

a set repr.

CMPS 2200 Intro. to Algorithms 37

Disjoint-set data structure
(Union-Find)

• Maintains a dynamic collection of pairwise-disjoint
sets S = {S1, S2, …, Sr}.

• Each set Si has one element distinguished as the
representative element.

• Supports operations:
• MAKE-SET(x): adds new set {x} to S
• UNION(x, y): replaces sets Sx, Sy with Sx  Sy
• FIND-SET(x): returns the representative of the

set Sx containing element x
• 1 < (n) < log*(n) < log(log(n)) < log(n)

O(1)
O((n))
O((n))

CMPS 2200 Intro. to Algorithms 38

Union-Find Example

MAKE-SET(2)

UNION(2, 4)
FIND-SET(4) = 4

S = {}
S = {{2}}

MAKE-SET(3) S = {{2}, {3}}
MAKE-SET(4) S = {{2}, {3}, {4}}

S = {{2, 4}, {3}}
FIND-SET(4) = 2
MAKE-SET(5) S = {{2, 4}, {3}, {5}}
UNION(4, 5) S = {{2, 4, 5}, {3}}

The representative is
underlined

CMPS 2200 Intro. to Algorithms 39

Kruskal’s algorithm
IDEA: Repeatedly pick edge with smallest
weight as long as it does not form a cycle.

S  S will contain all MST edges
for each v V do MAKE-SET(v)
Sort edges of E in non-decreasing order according to w
For each (u,v) E taken in this order do

if FIND-SET(u)  FIND-SET(v) ⊳ u,v in different trees
S  S  {(u,v)}
UNION(u,v) ⊳ Edge (u,v) connects the two trees

O(|V|)
O(|E|log|E|)

O((|V|))

O(|E|

Runtime: O(|V|+|E|log|E|+|E|(|V|)) = O(|E| log |E|)

CMPS 2200 Intro. to Algorithms 40

MST algorithms

• Prim’s algorithm:
• Maintains one tree
• Runs in time O(|E| log |V|), with binary heaps.

• Kruskal’s algorithm:
• Maintains a forest and uses the disjoint-set

data structure
• Runs in time O(|E| log |E|)

• Best to date: Randomized algorithm by Karger,
Klein, Tarjan [1993]. Runs in expected time

O(|V| + |E|)

CMPS 2200 Intro. to Algorithms 41

Disjoint-set data structure
(Union-Find)

• Maintains a dynamic collection of pairwise-disjoint
sets S = {S1, S2, …, Sr}.

• Each set Si has one element distinguished as the
representative element.

• Supports operations:
• MAKE-SET(x): adds new set {x} to S
• UNION(x, y): replaces sets Sx, Sy with Sx  Sy
• FIND-SET(x): returns the representative of the

set Sx containing element x
• 1 < (n) < log*(n) < log(log(n)) < log(n)

O(1)
O((n))
O((n))

CMPS 2200 Intro. to Algorithms 42

Augmented linked-list solution

…Si : x1 x2 xk

rep[Si]

rep

Store Si = {x1, x2, …, xk} as unordered doubly linked list.
Augmentation: Each element xj also stores pointer
rep[xj] to rep[Si] (which is the front of the list, x1).

• FIND-SET(x) returns rep[x].
• UNION(x, y) concatenates lists containing

x and y and updates the rep pointers for
all elements in the list containing y. – (n)

– (1)

Assume
pointer to x
is given.

CMPS 2200 Intro. to Algorithms 43

Example of
augmented linked-list solution

Sx : x1 x2

rep[Sx]

rep

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

Sy : y1 y2 y3

rep[Sy]

rep

CMPS 2200 Intro. to Algorithms 44

Example of
augmented linked-list solution

Sx  Sy :
x1 x2

rep[Sx]

rep

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

y1 y2 y3

rep[Sy]

rep

CMPS 2200 Intro. to Algorithms 45

Example of
augmented linked-list solution

Sx  Sy :
x1 x2

rep[Sx  Sy]

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

y1 y2 y3

rep

CMPS 2200 Intro. to Algorithms 46

Alternative concatenation

Sx : x1 x2

rep[Sy]

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep

rep[Sx]
rep

Sy :

CMPS 2200 Intro. to Algorithms 47

Alternative concatenation

Sx  Sy :
x1 x2

rep[Sy]

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep[Sx]
rep

rep

CMPS 2200 Intro. to Algorithms 48

Alternative concatenation

Sx  Sy :
x1 x2

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep

rep

rep[Sx  Sy]

CMPS 2200 Intro. to Algorithms 49

Trick 1: Smaller into larger
(weighted-union heuristic)

To save work, concatenate the smaller list onto the
end of the larger list. Cost = (length of smaller list).
Augment list to store its weight (# elements).
• Let n denote the overall number of elements

(equivalently, the number of MAKE-SET operations).
• Let m denote the total number of operations.
• Let f denote the number of FIND-SET operations.
Theorem: Cost of all UNION’s is O(n log n).
Corollary: Total cost is O(m + n log n).

50

Analysis of Trick 1
(weighted-union heuristic)

Theorem: Total cost of UNION’s is O(n log n).
Proof. • Monitor an element x and set Sx containing it.
• After initial MAKE-SET(x), weight[Sx] = 1.
• Each time Sx is united with Sy:

• if weight[Sy]  weight[Sx]:
– pay 1 to update rep[x], and
– weight[Sx] at least doubles (increases by weight[Sy]).

• if weight[Sy] < weight[Sx]:
– pay nothing, and
– weight[Sx] only increases.

Thus pay  log n for x.

51

Ackermann’s function A, and
it’s “inverse” 

Define







 
 .1 if

,0 if
)(

1
)()1(

1 k
k

jA
j

jA j
k

k

Define (n) = min {k : Ak(1)  n}  4 for practical n.

A0(j) = j + 1
A1(j) ~ 2 j
A2(j) ~ 2j 2j > 2j

A3(j) >
A4(j) is a lot bigger.

2
2

2

2 j

..
.

j

A0(1) = 2
A1(1) = 3
A2(1) = 7
A3(1) = 2047

A4(1) >

– iterate j+1 times

2
2

2

22047

..
.

2048 times

