CMPS 2200 - Fall 17

Minimum Spanning Trees
Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

CMPS 2200 Intro. to Algorithms

Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight functionw : E — R.

 For simplicity, assume that all edge weights are
distinct.

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

w(T)= > w(u,v).

(u,v)el

CMPS 2200 Intro. to Algorithms 2

Example of MST

§! 12

) 5 9
e
Q/Q (O
3% 10

CMPS 2200 Intro. to Algorithms

Hallmark for “greedy”
algorithms

D

Greedy-choice property
A locally optimal choice
Is globally optimal.

(D

N

Theorem [Cut property]. Let G = (V, E)
and let A — V. Suppose that (u, v) € E Is the
least-weight edge connecting Ato V \ A.
Then, (u, v) 1s contained in an MST T of G.

CMPS 2200 Intro. to Algorithms

Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

(u, v) = least-weight edge
o cV\A connecting A to V \ A

CMPS 2200 Intro. to Algorithms 5

Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

T: :\

o €A .
(u, v) = least-weight edge
o cV\A connecting A to V \ A

Consider the unique simple path fromutovinT.

CMPS 2200 Intro. to Algorithms 6

Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

T: :\

o € A
o cV\A

(u, v) = least-weight edge
connecting Ato V\ A

Consider the unigue simple path fromutovinT.

Swap (u, v) with the first edge on this path that
connects a vertex In A to a vertex in V \ A.

CMPS 2200 Intro. to Algorithms 7

Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

T" .0\
o € A /

o cV\A

Consider the unigue simple path fromutovinT.

Swap (u, v) with the first edge on this path that
connects a vertex In A to a vertex in V \ A.

A lighter-weight spanning tree than T results.

CMPS 2200 Intro. to Algorithms 8

(u, v) = least-weight edge
connecting Ato V\ A

Prim’s algorithm

IDEA: Malintain V \ A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.

Q«V Dijkstra:
key[v] < oo forall v e V while Q = do
key[s] < O for some arbitrary s € V o ECT ?ﬁ;T'M'N(Q)
while Q # & for each v e Adj[u] do
do u < EXTRACT-MIN(Q) if d[v] > d[u] + w(u, v) then
for each v e Adj[u] d[v] < d[u] + w(u, v)

doif v e Q and w(u, v) < key|[v]
then key[v] < w(u,v) © DECREASE-KEY
r[v] < u

At the end, {(v, [v])} forms the MST edges.

CMPS 2200 Intro. to Algorithms 9

Example of Prim’s algorithm

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

10

Example of Prim’s algorithm

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

11

Example of Prim’s algorithm

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

12

Example of Prim’s algorithm

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

13

Example of Prim’s algorithm

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

14

Example of Prim’s algorithm

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

15

Example of Prim’s algorithm

o € A
o cV\A

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

16

Example of Prim’s algorithm

o € A 6
o cV\A

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

17

Example of Prim’s algorithm

o € A 6
o cV\A

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

18

Example of Prim’s algorithm

o € A
o cV\A

-0

§ DR 5
U <~ EXTRACT-MIN(Q)

for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]

then key[v] < w(u, v)& DECREASE-KEY
n[v] <« u

CMPS 2200 Intro. to Algorithms

19

Example of Prim’s algorithm

o € A
o cV\A

'O
% @
U < EXTRACT-MIN(Q) f

for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

20

Example of Prim’s algorithm
o € A
e cV\A %
% 15@

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

21

Example of Prim’s algorithm
o € A
e cV\A %
% 15@

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

TVl <= U cyps 2200 intro. to Algorithms

22

Analysis of Prim

C Q<«V
O(V]) 2 key[v] <~ s forallv e V

total _ key[s] «- O for some arbitrary s € V
e while Q = &
do u <~ EXTRACT-MIN(Q)
V| ; ~ for each v € Adj[u]
times | degree(u) do if v e Q and w(u, V) < key[v]
times < then key[v] < w(u, V)
N - 7-C[V] < Uu /

Handshaking Lemma = O(|E|) implicit Decrease-KEY’S.
Time = O(|V])- Texrract-min OUED Tpecrease-key

CMPS 2200 Intro. to Algorithms 23

Analysis of Prim (continued)
Time - ®(|V|)'TEXTRACT-|\/|IN + ®(|E|)'TDECREASE-KEY

Q TEXTRACT—MIN TDECREASE-KEY Total

array o(V|) 0(1) O([V|?)

binary
heap

Fibonacci O(log|V]) O(1) O(|E| + |V]|log|V])
heap amortized amortized worst case

O(log|V[) O(log|V]) | O([E[log|V])

CMPS 2200 Intro. to Algorithms 24

Kruskal’s algorithm

IDEA (again greedy):
Repeatedly pick edge with smallest weight as long as it
does not form a cycle.

 The algorithm creates a set of trees (a forest)
 During the algorithm the added edges merge the trees
together, such that in the end only one tree remains

e Correctness: Next edge e connects two components
T, T,. Itis the lightest edge which does not produce a
cycle, hence it is also the lightest edge between T, and
VAT, and therefore satisfies the cut property.

CMPS 2200 Intro. to Algorithms 25

Example of Kruskal’s algorithm

S={ {a}.{b}.{c}.{d}.{e}
1o Uhi9}4h}}

- MST edges
a_setrepr. 6

14

Every node Is a single tree.

CMPS 2200 Intro. to Algorithms 26

Example of Kruskal’s algorithm

S={ {a}.{b}.{c}.{d}.{f}
12 19k 18 h}}

- MST edges
a_setrepr. 6

14

Edge 3 merged two singleton trees.

CMPS 2200 Intro. to Algorithms 27

Example of Kruskal’s algorithm

S={ {a}.{d}.{f}, {a}
1o 1&h} {b, c}}

- MST edges
a_setrepr. 6

CMPS 2200 Intro. to Algorithms

Example of Kruskal’s algorithm

S={ 1)1}, 19}
12 {§1 h}1 {Q1 b1 C}}

- MST edges
a_setrepr. 6

CMPS 2200 Intro. to Algorithms 29

Example of Kruskal’s algorithm

S={ {d}, {a}
12 {§1 h}1 {Q, b1 C1 f}}

- MST edges
a_setrepr. 6

CMPS 2200 Intro. to Algorithms 30

Example of Kruskal’s algorithm

S={{d}, {a}
., {&habcf}}

- MST edges
a setrepr. 6

Edge 8 merged the two bigger trees.

CMPS 2200 Intro. to Algorithms 31

Example of Kruskal’s algorithm

S=1 14}
» {ehabcfd}}

- MST edges
a_setrepr. 6

CMPS 2200 Intro. to Algorithms

Example of Kruskal’s algorithm

S=1 14}
» {ehabcfd}}

- MST edges
a_setrepr. 6

Skip edge 10 as it would cause a cycle.

CMPS 2200 Intro. to Algorithms 33

Example of Kruskal’s algorithm

S=1 14}
» {ehabcfd}}

- MST edges
a_setrepr.

Skip edge 12 as it would cause a cycle.

CMPS 2200 Intro. to Algorithms 34

Example of Kruskal’s algorithm

S=1 14}
» {ehabcfd}}

- MST edges
a_setrepr. 6

Skip edge 14 as it would cause a cycle.

CMPS 2200 Intro. to Algorithms 35

Example of Kruskal’s algorithm
S={{e, h,a,b,c, f,d g} }

- MST edges
a_setrepr.

CMPS 2200 Intro. to Algorithms

Disjoint-set data structure
(Union-Find)

* Maintains a dynamic collection of pairwise-disjoint
setsS =4S, S,, ..., S, }.

 Each set S, has one element distinguished as the
representative element.

e Supports operations:

O(1) MAKE-SET(X): adds new set {x} to S

O(a(n)) » UNION(X, y): replaces sets S,, S, with S, U S,

O(a(n)) « FIND-SET(X): returns the representative of the
set S, containing element x

* 1 <a(n) <log*(n) <log(log(n)) < log(n)

CMPS 2200 Intro. to Algorithms 37

Union-Find Example

s= {3 # s
MAKE-SET(2) S={{2}}

MAKE-SET(3) S={{2}, {3}}
MAKE-SET(4) S={{2}. {3}, {4}}
~IND-SET(4) =4

UNION(2, 4) S={{2, 4}, {3}}
~IND-SET(4) = 2

MAKE-SET(5) S={{2 4}, {3} {53}}

UNION(4, 5) S={{2 4,5}, {3}}

CMPS 2200 Intro. to Algorithms 38

Kruskal’s algorithm

IDEA: Repeatedly pick edge with smallest
welght as long as it does not form a cycle.

S« @ B Swill contain all MST edges

O(Vl) foreachv €V do MAKE-SET(V)
O(|E[logl|E[) Sort edges of E in non-decreasing order according to w

O(|E|) For each (u,v) € E taken in this order do

O(a(IV)) <

'if FIND-SET(u) # FIND-SET(v) © u,v in different trees
S« Su{(uv)}

Runtime:

. UNION(u,v) = Edge (u,v) connects the two trees

O([V|+|E|log|E|+|E|au([V])) = O(|E| log |E[)

CMPS 2200 Intro. to Algorithms 39

MST algorithms

* Prim’s algorithm:
* Maintains one tree
* Runs in time O(|E| log |V]), with binary heaps.

 Kruskal’s algorithm:
* Maintains a forest and uses the disjoint-set
data structure
* Runs in time O(|E| log |E|)

 Best to date: Randomized algorithm by Karger,
Klein, Tarjan [1993]. Runs in expected time
O(V| + |E[)

CMPS 2200 Intro. to Algorithms 40

Disjoint-set data structure
(Union-Find)

* Maintains a dynamic collection of pairwise-disjoint
setsS =4S, S,, ..., S, }.

 Each set S, has one element distinguished as the
representative element.

e Supports operations:

O(1) MAKE-SET(X): adds new set {x} to S

O(a(n)) » UNION(X, y): replaces sets S,, S, with S, U S,

O(a(n)) « FIND-SET(X): returns the representative of the
set S, containing element x

* 1 <a(n) <log*(n) <log(log(n)) < log(n)

CMPS 2200 Intro. to Algorithms 41

Augmented linked-list solution

Store S; = {X;, X5, ..., X} as unordered doubly linked list.
Augmentation: Each element x; also stores pointer
rep[x;] to rep[S;] (which is the front of the list, x).

[Assume) P
pointer to x _ > : = B
S given. S 1]k X2 re— X
& rep[S)
e FIND-SET(X) returns rep|[x]. -0(1)

e UNION(X, V) concatenates lists containing
x and y and updates the rep pointers for
. . . — O(n)
all elements In the list containing y.

MPS 2200 Intro. to Algorithms 42

Example of
augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S;].
UNION(X, V)
e concatenates the lists containing x and y, and
e updates the rep pointers for all elements in the

list containing .
rep

X | TT—L %
rep[S,]

rep

Syi Vil — Vo] — | V3

rep[S,]

CMPS 2200 Intro. to Algorithms 43

Example of
augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S;].

UNION(X, V)

e concatenates the lists containing x and y, and
e updates the rep pointers for all elements in the
list containing .

S.uUS,:

rep

X y-©

Xq

X5

rep[S,]

\

\

rep

\

Y1

rep[S,]

CMPS 2200 Intro. to Algorithms

Vol |— |Va

44

Example of
augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S;].

UNION(X, V)

e concatenates the lists containing x and y, and

e updates the rep pointers for all elements in the

list containing .

rep

S, uUS

X y-©

Xq

rep[S, v S]

X5

\

CMPS 2200 Intro. to Algorithms

\

\

Y1

Yo

Y3

45

Alternative concatenation

UNION(X, V) coulc
e concatenate t
e Update the re

Instead
ne lists containing vy and x, and

0 pointers for all elements in the

list containing x.

rep X

rep

rep[S,]

Sy: Vil — (Y2l —F Y3

rep[S,]

CMPS 2200 Intro. to Algorithms 46

Alternative concatenation

UNION(X, V) coulc
e concatenate t
e Update the re

Instead
ne lists containing vy and x, and

0 pointers for all elements in the

list containing x.

rep

7] =1L %,
. re
Sx Sy [- /‘ rep[S,]

Yol | —F (Yo —F (Vs

rep[S,]

CMPS 2200 Intro. to Algorithms 47

Alternative concatenation

UNIoN(X, v) could instead
e concatenate the lists containing y and x, and
e update the rep pointers for all elements in the
list containing x.

rep

/1% L %

vol T—F [vo] T—F [va /
rep[S, S,]

CMPS 2200 Intro. to Algorithms

Trick 1: Smaller into larger
(weighted-union heuristic)

To save work, concatenate the smaller list onto the
end of the larger list. Cost = ®(length of smaller list).
Augment list to store its weight (# elements).

e et n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).

 Let m denote the total number of operations.

e Let f denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s 1s O(n log n).
Corollary: Total cost is O(m + n log n).

CMPS 2200 Intro. to Algorithms 49

Analysis of Trick 1

(weighted-union heuristic)

Theorem: Total cost of UNION’s IS O(n log n).

Proof. « Monitor an element x and set S, containing it.
o After initial MAKE-SET(x), weight[S,] = 1.
* Each time S, Is united with S, :
* If weight[S,] > weight[S,]:
— pay 1 to update rep[x], and
— weight[S,] at least doubles (increases by weight[S,]).
* If weight[S,] < weight[S,]:
— pay nothing, and
—weight[S,] only increases.
Thus pay < log n for x. -

Ackermann’s functlon
It’s “inverse’

.] +1 |fk_0,
Define A (]) =+

foll) =] +1 Ag(1) = 2
Al(J) - 2J _ _ Al(l) — 3
Al) = 2] 2 >jgj A1) =7
."2 - Ag(l) = 2047 -
22 J .2)
. 2 J .
A3(J) > 2
A.(j) is a lot bigger. A1) > 2 ,

Define o.(n) = min {k : A,(1) > n} < 4 fo

A and

\Aéiil)(j) If k>1. —iterate j+1 times

2048 times

r practical n.

o1

