
10/4/17 CMPS 2200 Intro. to Algorithms 1

CMPS 2200 – Fall 2017

Dynamic Programming I
Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by
Carola Wenk

10/4/17 CMPS 2200 Intro. to Algorithms 2

Dynamic programming

• Algorithm design technique

• A technique for solving problems that have

1. an optimal substructure property (recursion)

2. overlapping subproblems

• Idea: Do not repeatedly solve the same subproblems,
but solve them only once and store the solutions in a
dynamic programming table

10/4/17 CMPS 2200 Intro. to Algorithms 3

Example: Fibonacci numbers
• F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n 2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Dynamic-programming hallmark #1
Optimal substructure

An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

Recursion

10/4/17 CMPS 2200 Intro. to Algorithms 4

Example: Fibonacci numbers
• F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n 2

• Implement this recursion directly:

F(n)
F(n-1) F(n-2)

F(n-2) F(n-3) F(n-3) F(n-4)

F(n-3) F(n-4)F(n-4) F(n-5) F(n-4) F(n-5)F(n-5) F(n-6)

same
subproblem

n n/2

• Runtime is exponential: 2n/2 ≤ T(n) ≤ 2n

• But we are repeatedly solving the same subproblems

10/4/17 CMPS 2200 Intro. to Algorithms 5

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct Fibonacci
subproblems is only n.

10/4/17 CMPS 2200 Intro. to Algorithms 6

Dynamic-programming

There are two variants of dynamic
programming:

1. Bottom-up dynamic programming
(often referred to as “dynamic
programming”)

2. Memoization

10/4/17

Bottom-up dynamic-
programming algorithm

fibBottomUpDP(n)
F[0] 0
F[1] 1
for (i 2, i≤ n, i++)

F[i] F[i-1]+F[i-2]
return F[n]

• Store 1D DP-table and fill bottom-up:

F: 0 1 1 2 3 5 8

• Time = (n), space = (n)
7CMPS 2200 Intro. to Algorithms

10/4/17 CMPS 2200 Intro. to Algorithms 8

Memoization algorithm
Memoization: Use recursive algorithm. After computing
a solution to a subproblem, store it in a table.
Subsequent calls check the table to avoid redoing work.

fibMemoizationRec(n,F)
if (F[n]= null)

if (n=0) F[n] 0
if (n=1) F[n] 1
F[n] fibMemoizationRec(n-1,F)

+ fibMemoizationRec(n-2,F)
return F[n]

• Time = (n), space = (n)

fibMemoization(n)
for all i: F[i] = null
fibMemoizationRec(n,F)
return F[n]

