4. Homework

Due $\mathbf{9 / 2 7} / \mathbf{1 7}$ at the beginning of class

Remember, you are allowed to turn in homeworks in groups of two. One writeup, with two names.

1. $1,2,3, \ldots, 15$ (8 points)

Justify your answers shortly.
(a) (2 points) Draw the binary search tree that results from inserting the numbers $1,2,3, \ldots, 15$ in that order. What is the total runtime for inserting the numbers $1,2,3, \ldots, n$ into a binary search tree in that order?
(b) (2 points) Give an order for inserting the numbers $1,2,3, \ldots, 15$ into a binary search tree such that the result is a perfectly balanced complete binary tree.
(c) (2 points) Draw the red-black tree that results from inserting the numbers $1,2,3, \ldots, 15$ in that order. What is the total runtime for inserting the numbers $1,2,3, \ldots, n$ into a red-black tree in that order?
(d) (2 points) Draw the B-tree with minimum-degree $\mathrm{k}=2$ that results from inserting the numbers $1,2,3, \ldots, 15$ in that order. What is the total runtime for inserting the numbers $1,2,3, \ldots, n$ into a B-tree with minimum-degree k in that order?
2. Black-Height (6 points)

Write pseudocode for a function int computeBH (RBnode root) that takes the root node of a candidate red-black tree and returns the black-height of the tree if the tree is a valid red-black tree, or -1 otherwise.

- The class RBnode stores the key, the color, and references left and right to its two children.
- You can assume all null's are black and that each node's color is either RED or BLACK.
- int computeBH should check the blackness of the root separately and then call a recursive function int computeBH_rec (RBnode node) that returns the black-height of the subtree rooted at node if red-black tree properties 4 and 5 are fulfilled, or -1 otherwise.

Analyze the runtime of your function.

3. B-tree-search using binary search (4 points)

Consider changing B-Tree-Search to use binary search instead of linear search on the key.
(a) What is the number of disk accesses? Justify your answer.
(b) Show that the CPU time is $O(\log n)$, which is independent of k.

