2. Homework

Due 9/13/17 at the beginning of class

Remember, you are allowed to turn in homeworks in groups of two. One writeup, with two names.

1. Big-Oh ranking (8 points)

Rank the following nine functions by order of growth, i.e., find an arrangement $f_1, f_2, ...$ of the functions satisfying $f_1 \in O(f_2), f_2 \in O(f_3),...$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_i, f_j that are adjacent in your ordering, prove shortly why $f_i \in O(f_j)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$4^{n}$$
, 3^{n} , $\sqrt[2]{n}$, $2n^{3} + 4$, 1, $\log n$, $\log \log n$, $\sqrt[3]{n}$, $\sqrt[2]{n^{6}}$

Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

if the limits exist; where f' and g' are the derivatives of f and g, respectively.

2. Transitivity (4 points)

Use the definition of big-Oh to prove:

If
$$f(n) \in O(g(n))$$
 and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$

3. Code snippet (4 points)

Give the Θ -runtime for the code snippet below, depending on n. Justify your answer.

```
for(i=n*n; i>=1; i=i-4)
for(j=n*n; j>=1; j=j/4)
  print(" ");
```