## 2. Homework

Due 9/13/17 at the beginning of class
Remember, you are allowed to turn in homeworks in groups of two. One writeup, with two names.

1. Big-Oh ranking (8 points)

Rank the following nine functions by order of growth, i.e., find an arrangement $f_{1}, f_{2}, \ldots$ of the functions satisfying $f_{1} \in O\left(f_{2}\right), f_{2} \in O\left(f_{3}\right), \ldots$. Partition your list into equivalence classes such that $f$ and $g$ are in the same class if and only if $f \in \Theta(g)$. For every two functions $f_{i}, f_{j}$ that are adjacent in your ordering, prove shortly why $f_{i} \in O\left(f_{j}\right)$ holds. And if $f$ and $g$ are in the same class, prove that $f \in \Theta(g)$.

$$
4^{n}, 3^{n}, \sqrt[2]{n}, 2 n^{3}+4,1, \log n, \log \log n, \sqrt[3]{n}, \sqrt[2]{n^{6}}
$$

Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

if the limits exist; where $f^{\prime}$ and $g^{\prime}$ are the derivatives of $f$ and $g$, respectively.
2. Transitivity (4 points)

Use the definition of big-Oh to prove:

$$
\text { If } f(n) \in O(g(n)) \text { and } g(n) \in O(h(n)) \text { then } f(n) \in O(h(n))
$$

## 3. Code snippet (4 points)

Give the $\Theta$-runtime for the code snippet below, depending on $n$. Justify your answer.

```
for(i=n*n; i>=1; i=i-4)
    for(j=n*n; j>=1; j=j/4)
        print(" ");
```

