CMPS 2200 - Fall 2015

Red-black trees
 Carola Wenk

Slides courtesy of Charles Leiserson with changes by Carola Wenk

ADT Dictionary / Dynamic Set

Abstract data type (ADT) Dictionary (also called Dynamic Set):
A data structure which supports operations

- Insert
- Delete
- Find

Using balanced binary search trees we can implement a dictionary data structure such that each operation takes $O(\log n)$ time.

Search Trees

- A binary search tree is a binary tree. Each node stores a key. The tree fulfills the binary search tree property:

For every node x holds:

- $y \leq x$, for all y in the subtree left of x
- $x<y$, for all y in the subtree right of x

Search Trees

Different variants of search trees:

- Balanced search trees (guarantee height of $\mathrm{O}(\log n)$ for n elements)

- k-ary search trees (such as B-trees, 2-3-4-trees)

- Search trees that store keys only in leaves, and store copies of keys as split-values in internal nodes

Balanced search trees

> Balanced search tree: A search-tree data structure for which a height of $O(\log n)$ is guaranteed when implementing a dynamic set of n items.

\author{

- AVL trees
 - 2-3 trees
 Examples:
 - 2-3-4 trees
 - B-trees
 - Red-black trees
}

Red-black trees

This data structure requires an extra onebit color field in each node.
Red-black properties:

1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL's) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x, to a descendant leaf have the same number of black nodes = black-height (x).

Example of a red-black tree

1. Every node is either red or black.

Example of a red-black tree

2., 3. The root and leaves (Nil's) are black.

Example of a red-black tree

4. If a node is red, then both its children are black.

Example of a red-black tree

5. All simple paths from any node x, excluding x, to a descendant leaf have the same number of black nodes = black-height(x).

Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \log (n+1)
$$

Proof.
Intuition:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \log (n+1)
$$

Proof.
Intuition:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \log (n+1)
$$

Proof.
Intuition:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \log (n+1)
$$

Proof.
Intuition:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \log (n+1)
$$

Proof.
Intuition:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \log (n+1)
$$

Proof.
Intuition:

- Merge red nodes into their black parents.

- This process produces a tree in which each node has 2,3 , or 4 children.
- The 2-3-4 tree has uniform depth h^{\prime} of leaves.

Proof (continued)

- We have $h^{\prime} \geq h / 2$, since at most half the vertices on any path are red.
- The number of leaves in each tree is $n+1$
$\Rightarrow n+1 \geq 2^{h^{\prime}}$
$\Rightarrow \log (n+1) \geq h^{\prime} \geq h / 2$
$\Rightarrow h \leq 2 \log (n+1) . \square$

Query operations

Corollary. The queries Search, Min, Max, Successor, and Predecessor all run in $O(\log n)$ time on a red-black tree with n nodes.

Modifying operations

The operations Insert and Delete cause modifications to the red-black tree:

1. the operation itself,
2. color changes,
3. restructuring the links of the tree via "rotations".

Rotations

- Rotations maintain the inorder ordering of keys:

$$
a \in \alpha, b \in \beta, c \in \gamma \Rightarrow a \leq A \leq b \leq B \leq c .
$$

- Rotations maintain the binary search tree property
- A rotation can be performed in $O(1)$ time.

Red-black trees

This data structure requires an extra onebit color field in each node.
Red-black properties:

1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL's) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x, to a descendant leaf have the same number of black nodes $=$ black-height (x).

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.

- Recolor, moving the violation up the tree.
- Right-Rotate(18).

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.

- Recolor, moving the violation up the tree.
- Right-Rotate(18).

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.

- Recolor, moving the violation up the tree.
- Right-Rotate(18).
- Left-Rotate(7)

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.
- Right-Rotate(18).

- Left-Rotate(7)

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.
- Right-Rotate(18).

- Left-Rotate(7) and recolor.

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.
- Right-Rotate(18).

- Left-Rotate(7) and recolor.

Pseudocode

RB－InSERT（ T, x ）
Tree－Insert (T, x)
color $[x] \leftarrow$ RED $\quad \triangleright$ only RB property 4 can be violated
while $x \neq \operatorname{root}[T]$ and $\operatorname{color}[p[x]]=$ RED

$$
\text { do if } p[x]=\operatorname{left}[p[p[x]]
$$

then $y \leftarrow \operatorname{right}[p[p[x]] \quad \triangleright y=$ aunt／uncle of x
if color $[y]=$ RED
then \langle Case 1\rangle
else if $x=\operatorname{right}[p[x]]$ then \langle Case 2〉 \triangleright Case 2 falls into Case 3 ＜Case 3〉
else 〈＂then＂clause with＂left＂and＂right＂swapped〉 color $[\operatorname{root}[T]] \leftarrow$ BLACK

Graphical notation

Let \triangle denote a subtree with a black root.
All \triangle 's have the same black-height.

Case 1

(Or, A’s children are swapped.)

$$
\begin{aligned}
& p[x]=\operatorname{left}[p[p[x]] \\
& y \leftarrow \operatorname{right}[p[p[x]] \\
& \operatorname{color}[y]=\operatorname{RED}
\end{aligned}
$$

and D, and recurse, since C's parent may be red.

Case 2

$p[x]=\operatorname{left}[p[p[x]]$ $y \leftarrow \operatorname{right}[p[p[x]]$ color $[y]=$ BLACK

$$
x=\operatorname{right}[p[x]]
$$

Case 3

$$
\begin{aligned}
& p[x]=\operatorname{left}[p[p[x]] \\
& y \leftarrow \operatorname{right}[p[p[x]] \\
& \operatorname{color}[y]=\operatorname{BLACK} \\
& x=\operatorname{left}[p[x]]
\end{aligned}
$$

Analysis

- Go up the tree performing Case 1 , which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(\log n)$ with $O(1)$ rotations.
RB-Delete - same asymptotic running time and number of rotations as RB-InSERT.

Pseudocode (part II)

```
else <"then" clause with "left" and "right" swapped>
\triangleright p[x] = right[p[p[x]]
then }y\leftarrow\operatorname{left[p[p[x]]}\quad\trianglerighty=\mathrm{ aunt/uncle of }
    if color[y] = RED
    then <Case 1'>
    else if }x=\operatorname{left[p[x]]
        then <Case 2'\rangle \triangleright Case 2' falls into Case 3'
        <Case 3'>
color[root[T]] \leftarrow BLACK
```


Case 1'

(Or, A's children are swapped.) Push C’s black onto A

$$
\begin{aligned}
& p[x]=\operatorname{right}[p[p[x]] \\
& y \leftarrow \operatorname{left}[p[p[x]] \\
& \operatorname{color}[y]=\operatorname{RED}
\end{aligned}
$$

and D, and recurse, since C's parent may be red.

Case 2'

$p[x]=\operatorname{right}[p[p[x]]$
$y \leftarrow \operatorname{left}[p[p[x]]$
Transform to Case 3’.

$$
\operatorname{color}[y]=\text { BLACK }
$$

$$
x=\operatorname{left}[p[x]]
$$

Case 3'

$p[x]=\operatorname{right}[p[p[x]]$
$y \leftarrow \operatorname{left}[p[p[x]]$
color $[y]=$ BLACK
$x=\operatorname{right}[p[x]]$

