CMPS 2200 – Fall 2015

Randomized Algorithms, Quicksort and Randomized Selection

Carola Wenk

Slides courtesy of Charles Leiserson with additions by Carola Wenk

Deterministic Algorithms

Runtime for deterministic algorithms with input size *n*:

- Best-case runtime
 - \rightarrow Attained by one input of size *n*
- Worst-case runtime
 - \rightarrow Attained by one input of size *n*
- Average runtime
 - → Averaged over all possible inputs of size *n*

Deterministic Algorithms: Insertion Sort

```
for j=2 to n {
   key = A[j]
   // insert A[j] into sorted sequence A[1..j-1]
   i=j-1
   while(i>0 && A[i]>key){
     A[i+1]=A[i]
     i — —
   A[i+1]=key
}
     • Best case runtime?
     • Worst case runtime?
```

Deterministic Algorithms: Insertion Sort

Best-case runtime: O(n), input $[1,2,3,\ldots,n]$

 \rightarrow Attained by one input of size *n*

• Worst-case runtime: $O(n^2)$, input [n, n-1, ..., 2, 1]

 \rightarrow Attained by one input of size *n*

• Average runtime : $O(n^2)$

 $\rightarrow \text{Averaged over all possible inputs of size } n$

•What kind of inputs are there?

• How many inputs are there?

Average Runtime

- What kind of inputs are there?
 - Do [1,2,...,*n*] and [5,6,...,*n*+5] cause different behavior of Insertion Sort?
 - No. Therefore it suffices to only consider all permutations of $[1,2,\ldots,n]$.
- How many inputs are there?
 - There are *n*! different permutations of [1,2,...,*n*]

for j=2 to n { key = A[j]**Average Runtime** // insert A[j] into sorted sequen i=i-1 while(i>0 && A[i]>key){ **Insertion Sort:** *n*=4 A[i+1]=A[i]i ---A[i+1]=key• Inputs: 4!=24 [4,1,3,2] [1,2,3,4] 0 [4,1,2,3] **3** [4,3,2,1] 6 [2,1,3,4] 1 [1,4,2,3] 2 [1,4,3,2] **3** [3,4,2,1] 5 [1,2,4,3] 1 [3,2,4,1] 4 [1,3,2,4] 1 [1,3,4,2] 2 [3,1,2,4] 2 [4,3,1,2] **5** [4,2,3,1] **5** [4,2,1,3] 4 [3,2,1,4] **3** [2,1,4,3] 2 [3,4,1,2] **4** [2,4,3,1] **4** [2,4,1,3] 3 [3,1,4,2] **3** [2,3,4,1] **3** [2,3,1,4] **2** • Runtime is proportional to: 3 + **#times in while loop**

• Best: 3+0, Worst: 3+6=9, Average: 3+72/24 = 6

6

Average Runtime: Insertion Sort

- The average runtime averages runtimes over all *n*! different input permutations
- Disadvantage of considering average runtime:
 - There are still worst-case inputs that will have the worst-case runtime
 - Are all inputs really equally likely? That depends on the application
- \Rightarrow **Better:** Use a randomized algorithm

Randomized Algorithm: Insertion Sort

- Randomize the order of the input array:
 - Either prior to calling insertion sort,
 - or during insertion sort (insert random element)
- This makes the runtime depend on a probabilistic experiment (sequence of numbers obtained from random number generator; or random input permutation)

⇒Runtime is a random variable (maps sequence of random numbers to runtimes)

• **Expected runtime** = expected value of runtime random variable

Randomized Algorithm: Insertion Sort

- Runtime is independent of input order ([1,2,3,4] may have good or bad runtime, depending on sequence of random numbers)
- •No assumptions need to be made about input distribution
- No one specific input elicits worst-case behavior
- The worst case is determined only by the output of a random-number generator.
- ⇒ When possible use expected runtimes of randomized algorithms instead of average case analysis of deterministic algorithms

Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).
- We are going to perform an expected runtime analysis on randomized quicksort

Quicksort: Divide and conquer

Quicksort an *n*-element array:

1. Divide: Partition the array into two subarrays around a *pivot* x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.

Conquer: Recursively sort the two subarrays.
 Combine: Trivial.

Key: *Linear-time partitioning subroutine.*

Partitioning subroutine

PARTITION $(A, p, q) \triangleright A[p \dots q]$ $x \leftarrow A[p] \qquad \triangleright \text{pivot} = A[p]$ Running time $i \leftarrow p$ = O(n) for nfor $i \leftarrow p + 1$ to q elements. do if $A[j] \leq x$ then $i \leftarrow i + 1$ exchange $A[i] \leftrightarrow A[j]$ exchange $A[p] \leftrightarrow A[i]$ return *i* Invariant: 9 $\leq x$ $\geq \chi$ $\boldsymbol{\chi}$

1

p

Q

CMPS 2200 Intro. to Algorithms

Pseudocode for quicksort

QUICKSORT(A, p, r) **if** p < r **then** $q \leftarrow \text{PARTITION}(A, p, r)$ QUICKSORT(A, p, q-1) QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let T(n) = worst-case running time on an array of n elements.

Worst-case of quicksort

QUICKSORT(A, p, r) **if** p < r **then** $q \leftarrow \text{PARTITION}(A, p, r)$ QUICKSORT(A, p, q-1) QUICKSORT(A, q+1, r)

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

 $T(n) = T(0) + T(n-1) + \Theta(n)$ = $\Theta(1) + T(n-1) + \Theta(n)$ = $T(n-1) + \Theta(n)$ = $\Theta(n^2)$ (arithmetic series)

Worst-case recursion tree T(n) = T(0) + T(n-1) + cn

Worst-case recursion tree T(n) = T(0) + T(n-1) + cnT(n)

Worst-case recursion tree

T(n) = T(0) + T(n-1) + cn

Worst-case recursion tree

T(n) = T(0) + T(n-1) + cn

Worst-case recursion tree T(n) = T(0) + T(n-1) + cn

Best-case analysis (For intuition only!)

If we're lucky, PARTITION splits the array evenly: $T(n) = 2T(n/2) + \Theta(n)$ $= \Theta(n \log n) \quad (\text{same as merge sort})$

What if the split is always $\frac{1}{10}$: $\frac{9}{10}$?

 $T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$ What is the solution to this recurrence?

T(n)

Quicksort Runtimes

- Best case runtime $T_{\text{best}}(n) \in O(n \log n)$
- Worst case runtime $T_{worst}(n) \in O(n^2)$
- Worse than mergesort? Why is it called quicksort then?
- Its average runtime $T_{avg}(n) \in O(n \log n)$
- Better even, the expected runtime of randomized quicksort is O(n log n)

Average Runtime

The average runtime $T_{avg}(n)$ for Quicksort is the average runtime over all possible inputs of length n.

- $T_{avg}(n)$ has to average the runtimes over all n! different input permutations.
- There are still worst-case inputs that will have a $O(n^2)$ runtime
- \Rightarrow **Better:** Use randomized quicksort

Randomized quicksort

IDEA: Partition around a *random* element.

- Running time is independent of the input order. It depends only on the sequence *s* of random numbers.
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the sequence *s* of random numbers.

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from *code tuning*.
- Quicksort behaves well even with caching and virtual memory.

Average Runtime vs. Expected Runtime

• Average runtime is averaged over all inputs of a deterministic algorithm.

• Expected runtime is the expected value of the runtime random variable of a randomized algorithm. It effectively "averages" over all sequences of random numbers.

• De facto both analyses are very similar. However in practice the randomized algorithm ensures that not one single input elicits worst case behavior.

Order statistics

Select the *i*th smallest of *n* elements (the element with *rank i*).

- *i* = 1: *minimum*;
- *i* = *n*: *maximum*;
- $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$: *median*.

Naive algorithm: Sort and index *i*th element. Worst-case running time = $\Theta(n \log n + 1)$ = $\Theta(n \log n)$, using merge sort (*not* quicksort).

Randomized divide-andconquer algorithm

RAND-SELECT(A, p, q, i) $\triangleright i$ -th smallest of $A[p \dots q]$ if p = q then return A[p] $r \leftarrow \text{RAND-PARTITION}(A, p, q)$ $k \leftarrow r - p + 1$ $\triangleright k = \text{rank}(A[r])$

- if i = k then return A[r]
- if i < k

then return RAND-SELECT(A, p, r - 1, i) else return RAND-SELECT(A, r + 1, q, i - k)

CMPS 2200 Intro. to Algorithms

Example

Select the i = 7th smallest:

Partition:

Intuition for analysis

(All our analyses today assume that all elements are distinct.) Lucky: T(n) = T(3n/4) + dn $= \Theta(n)$ for RAND-PARTITION $n^{\log_{4/3}1} = n^0 = 1$ CASE 3

Unlucky: T(n) = T(n-1) + dn $= \Theta(n^2)$

arithmetic series

Worse than sorting!

Analysis of expected time

- Call a pivot *good* if its rank lies in [n/4, 3n/4].
- How many good pivots are there? n/2 \Rightarrow A random pivot has 50% chance of being good.
- Let T(n,s) be the runtime random variable

Analysis of expected time

Lemma: A fair coin needs to be tossed an expected number of 2 times until the first "heads" is seen.

Proof: Let E(X) be the expected number of tosses until the first "heads" is seen.

- Need at least one toss, if it's "heads" we are done.
- If it's "tails" we need to repeat (probability $\frac{1}{2}$).
 - $\Rightarrow E(X) = 1 + \frac{1}{2} E(X)$ $\Rightarrow E(X) = 2$

 $\Rightarrow E(T(n,s)) \le E(T(3n/4,s)) + E(X(s) \cdot dn)$ $\Rightarrow E(T(n,s)) \le E(T(3n/4,s)) + E(X(s)) \cdot dn$ $\Rightarrow E(T(n,s)) \le E(T(3n/4,s)) + 2 \cdot dn$ $\Rightarrow T_{exp}(n) \le T_{exp}(3n/4) + \Theta(n)$ $\Rightarrow T_{exp}(n) \in \Theta(n)$

Linearity of expectation

Lemma

Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is *very* bad: $\Theta(n^2)$.
- *Q*. Is there an algorithm that runs in linear time in the worst case?
- *A*. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

IDEA: Generate a good pivot recursively. This algorithms large constants though and therefore is not efficient in practice.