CMPS 2200 - Fall 2015

Randomized Algorithms, Quicksort and Randomized Selection

 Carola Wenk

 Carola Wenk}

Slides courtesy of Charles Leiserson with additions by Carola Wenk

Deterministic Algorithms

Runtime for deterministic algorithms with input size n :

- Best-case runtime
\rightarrow Attained by one input of size n
- Worst-case runtime
\rightarrow Attained by one input of size n
- Average runtime
\rightarrow Averaged over all possible inputs of size n

Deterministic Algorithms: Insertion Sort

```
for \(j=2\) to \(n\{\)
    key \(=A[j]\)
    // insert A[j] into sorted sequence A[1..j-1]
    i=j-1
    while(i>0 \&\& A[i]>key)\{
        A[i+1]=A[i]
        i--
    \}
    A[i+1]=key
\}
- Best case runtime?
- Worst case runtime?
```


Deterministic Algorithms: Insertion Sort

Best-case runtime: $O(n)$, input $[1,2,3, \ldots, n]$
\rightarrow Attained by one input of size n

- Worst-case runtime: $O\left(n^{2}\right)$, input $[n, n-1, \ldots, 2,1]$
\rightarrow Attained by one input of size n
- Average runtime : $O\left(n^{2}\right)$
\rightarrow Averaged over all possible inputs of size n
-What kind of inputs are there?
- How many inputs are there?

Average Runtime

- What kind of inputs are there?
- Do [1,2, .., n] and [5,6, .., $n+5$] cause different behavior of Insertion Sort?
- No. Therefore it suffices to only consider all permutations of $[1,2, \ldots, n]$.
- How many inputs are there?
- There are n ! different permutations of [1,2,...,n]

Average Runtime Insertion Sort: $\boldsymbol{n = 4}$

```
for j=2 to n {
i=j-1
```

while(i>0 \&\& A[i]>key)\{
$A[i+1]=A[i]$

- Inputs: $4!=24$
[1,2,3,4] 0
[4,1,2,3] 3
[4,1,3,2] 4
[4,3,2,1] 6
[2,1,3,4] 1
[1,4,2,3] 2
[1,4,3,2] 3
[3,4,2,1] 5
[1,3,2,4] 1
[1,2,4,3] 1
[1,3,4,2] 2
[3,2,4,1] 4
[3,1,2,4] 2
[4,2,1,3] 4
[4,3,1,2] 5
[4,2,3,1] 5
[3,2,1,4] 3
[2,1,4,3] 2
[3,4,1,2] 4
[2,4,3,1] 4
[2,3,1,4] 2
[2,4,1,3] 3
[3,1,4,2] 3 [2,3,4,1] 3
- Runtime is proportional to: $3+$ \#times in while loop

Average Runtime: Insertion Sort

- The average runtime averages runtimes over all n ! different input permutations
- Disadvantage of considering average runtime:
- There are still worst-case inputs that will have the worst-case runtime
- Are all inputs really equally likely? That depends on the application
\Rightarrow Better: Use a randomized algorithm

Randomized Algorithm: Insertion Sort

- Randomize the order of the input array:
- Either prior to calling insertion sort,
- or during insertion sort (insert random element)
- This makes the runtime depend on a probabilistic experiment (sequence of numbers obtained from random number generator; or random input permutation)
\Rightarrow Runtime is a random variable (maps sequence of random numbers to runtimes)
- Expected runtime = expected value of runtime random variable

Randomized Algorithm: Insertion Sort

- Runtime is independent of input order ([1,2,3,4] may have good or bad runtime, depending on sequence of random numbers)
- No assumptions need to be made about input distribution
- No one specific input elicits worst-case behavior
- The worst case is determined only by the output of a random-number generator.
\Rightarrow When possible use expected runtimes of randomized algorithms instead of average case analysis of deterministic algorithms

Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).
- We are going to perform an expected runtime analysis on randomized quicksort

Quicksort: Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

```
\(\operatorname{Partition}(A, p, q) \triangleright A[p \ldots q]\)
    \(x \leftarrow A[p] \quad \triangleright\) pivot \(=A[p]\)
    \(i \leftarrow p\)
    for \(j \leftarrow p+1\) to \(q\)
        do if \(A[j] \leq x\)
```

Running time $=O(n)$ for n elements.

```
then \(i \leftarrow i+1\)
exchange \(A[i] \leftrightarrow A[j]\)
exchange \(A[p] \leftrightarrow A[i]\)
return \(i\)
```


Example of partitioning

6	5	3	10	8	13	2	11

Example of partitioning

6	5	3	10	8	13	2	11

Example of partitioning

6	5	3	10	8	13	2	11

Example of partitioning

Pseudocode for quicksort

Quicksort (A, p, r)
if $p<r$
then $q \leftarrow \operatorname{Partition}(A, p, r)$
Quicksort(A, $p, q-1$)
Quicksort (A, $q+1, r$)

Initial call: Quicksort(A, 1, n)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let $T(n)=$ worst-case running time on an array of n elements.

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$
\begin{aligned}
T(n) & =T(0)+T(n-1)+\Theta(n) \\
& =\Theta(1)+T(n-1)+\Theta(n) \\
& =T(n-1)+\Theta(n) \\
& =\Theta\left(n^{2}\right) \quad \text { (arithmetic series) }
\end{aligned}
$$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

$T(n)$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

$$
\Theta(1)
$$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Best-case analysis (For intuition only!)

If we're lucky, Partition splits the array evenly:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n) \\
& =\Theta(n \log n) \quad \text { (same as merge sort) }
\end{aligned}
$$

What if the split is always $\frac{1}{10}: \frac{9}{10}$?

$$
T(n)=T\left(\frac{1}{10} n\right)+T\left(\frac{9}{10} n\right)+\Theta(n)
$$

What is the solution to this recurrence?

Analysis of "almost-best" case

$$
T(n)
$$

Analysis of "almost-best" case

CMPS 2200 Intro. to Algorithms

Quicksort Runtimes

- Best case runtime $\mathrm{T}_{\text {best }}(n) \in \mathrm{O}(n \log n)$
- Worst case runtime $\mathrm{T}_{\text {worst }}(n) \in \mathrm{O}\left(n^{2}\right)$
- Worse than mergesort? Why is it called quicksort then?
- Its average runtime $\mathrm{T}_{\text {avg }}(n) \in \mathrm{O}(n \log n)$
- Better even, the expected runtime of randomized quicksort is $\mathrm{O}(n \log n)$

Average Runtime

The average runtime $T_{\text {avg }}(n)$ for Quicksort is the average runtime over all possible inputs of length n.

- $\mathrm{T}_{\text {avg }}(n)$ has to average the runtimes over all n ! different input permutations.
- There are still worst-case inputs that will have a $\mathrm{O}\left(n^{2}\right)$ runtime
\Rightarrow Better: Use randomized quicksort

Randomized quicksort

Idea: Partition around a random element.

- Running time is independent of the input order. It depends only on the sequence s of random numbers.
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the sequence s of random numbers.

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from code tuning.
- Quicksort behaves well even with caching and virtual memory.

Average Runtime vs. Expected Runtime

- Average runtime is averaged over all inputs of a deterministic algorithm.
- Expected runtime is the expected value of the runtime random variable of a randomized algorithm. It effectively "averages" over all sequences of random numbers.
- De facto both analyses are very similar. However in practice the randomized algorithm ensures that not one single input elicits worst case behavior.

Order statistics

Select the i th smallest of n elements (the element with rank i).

- $i=1$: minimum;
- $i=n$: maximum;
- $i=\lfloor(n+1) / 2\rfloor$ or $\lceil(n+1) / 2\rceil$: median.

Naive algorithm: Sort and index i th element.
Worst-case running time $=\Theta(n \log n+1)$

$$
=\Theta(n \log n)
$$

using merge sort (not quicksort).

Randomized divide-andconquer algorithm

Rand-Select $(A, p, q, i) \quad \triangleright i$-th smallest of $A[p \ldots q]$
if $p=q$ then return $A[p]$
$r \leftarrow$ Rand-Partition (A, p, q)
$k \leftarrow r-p+1 \quad \triangleright k=\operatorname{rank}(A[r])$
if $i=k$ then return $A[r]$
if $i<k$
then return Rand-Select($A, p, r-1, i)$ else return Rand-Select $(A, r+1, q, i-k)$

Example

Select the $i=7$ th smallest:

Partition:

Select the 7-4 = 3rd smallest recursively.

Intuition for analysis

(All our analyses today assume that all elements are distinct.)
Lucky:

for Rand-Partition

$$
\begin{aligned}
T(n) & =T(3 n / 4)+d n \\
& =\Theta(n)
\end{aligned}
$$

$$
n^{\log _{4 / 3} 1}=n^{0}=1
$$

$$
\text { CASE } 3
$$

Unlucky:

$$
\begin{aligned}
T(n) & =T(n-1)+d n \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

Worse than sorting!

Analysis of expected time

- Call a pivot good if its rank lies in [n/4,3n/4].
- How many good pivots are there? $n / 2$ \Rightarrow A random pivot has 50% chance of being good.
- Let $T(n, s)$ be the runtime random variable

Analysis of expected time

Lemma: A fair coin needs to be tossed an expected number of 2 times until the first "heads" is seen.

Proof: Let $E(X)$ be the expected number of tosses until the first "heads"is seen.

- Need at least one toss, if it's "heads" we are done.
- If it's "tails" we need to repeat (probability $1 / 2$).

$$
\begin{aligned}
& \Rightarrow E(X)=1+1 / 2 E(X) \\
& \Rightarrow E(X)=2
\end{aligned}
$$

Analysis of expected time

$$
\begin{aligned}
& \Rightarrow E(T(n, s)) \leq E(T(3 n / 4, s))+E(\mathrm{X}(\mathrm{~s}) \cdot d n) \\
& \Rightarrow E(T(n, s)) \leq E(T(3 n / 4, s))+E(\mathrm{X}(\mathrm{~s})) \cdot d n \\
& \Rightarrow E(T(n, s)) \leq E(T(3 n / 4, s))+2 \cdot d n \\
& \Rightarrow T_{\text {exp }}(n) \leq T_{\text {exp }}(3 n / 4)+\Theta(n) \\
& \Rightarrow T_{\text {exp }}(n) \in \Theta(n)
\end{aligned}
$$

Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is very bad: $\Theta\left(n^{2}\right)$.
Q. Is there an algorithm that runs in linear time in the worst case?
A. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

IdEA: Generate a good pivot recursively.
This algorithms large constants though and therefore is not efficient in practice.

