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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems of sizes that are fractions of the 
original problem size.

2. Conquer the subproblems by solving them 
recursively.

3. Combine subproblem solutions.

 Runtime recurrences 
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The master method

The master method applies to recurrences of 
the form

T(n) = a T(n/b) + f (n) , 
where a  1, b > 1, and f is asymptotically 
positive.
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Example: merge sort
1. Divide: Trivial.
2. Conquer: Recursively sort a=2

subarrays of size n/2=n/b
3. Combine: Linear-time merge, runtime 

f(n)O(n)

T(n) = 2 T(n/2) + O(n)
# subproblems subproblem size work dividing 

and combining

T(n) = a T(n/b) + f(n)
CMPS 2200 Introduction to Algorithms
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Master Theorem
T(n) = a T(n/b) + f (n)

CASE 1:
f (n) = O(nlogba – )  T(n) = (nlogba)
for some >0

CASE 2:
f (n) = (nlogba logkn)  T(n) = (nlogba logk+1n)
for some k≥0

CASE 3:
(i) f (n) = (nlogba + )
for some >0  T(n) = ( f (n))
and (ii) a f (n/b)  c f (n) 
for some c < 1
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How to apply the theorem
Compare f (n) with nlogba :

1. f (n) = O(nlogba – ) for some constant  > 0.
• f (n) grows polynomially slower than nlogba

(by an n factor).
Solution: T(n) = (nlogba) .

2. f (n) = (nlogba logkn) for some constant k  0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = (nlogba logk+1n) .
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How to apply the theorem

3. f (n) = (nlogba + ) for some constant  > 0.
• f (n) grows polynomially faster than nlogba (by 

an n factor),
and f (n) satisfies the regularity condition that 
a f (n/b)  c f (n) for some constant c < 1.
Solution: T(n) = ( f (n)) .

Compare f (n) with nlogba :
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Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
# subproblems subproblem size work dividing 

and combining
nlogba = nlog22 = n1 = n  CASE 2 (k = 0)

 T(n) = (n log n) . 
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Example: binary search

T(n) = 1 T(n/2) + (1)

# subproblems
subproblem size

work dividing 
and combining

nlogba = nlog21 = n0 = 1  CASE 2 (k = 0)
 T(n) = (log n) . 
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Matrix multiplication:
Divide-and-conquer algorithm

nn matrix = 22 matrix of (n/2)n/2) submatrices:
IDEA:
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C = A  B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g
u = c·f +d·h

8 recursive mults of (n/2)n/2) submatrices 
4 adds of (n/2)n/2) submatrices 
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Matrix multiplication:
Analysis of D&C algorithm

No better than the ordinary matrix 
multiplication algorithm.

# submatrices
submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + (n2)

nlogba = nlog28 = n3  CASE 1  T(n) = (n3) 
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)(n/2) submatrices.  Form P-terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)(n/2) submatrices.

T(n) = 7 T(n/2) + (n2)
nlogba = nlog27  n2.81  CASE 1  T(n) = (nlog 7)
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Master theorem: Examples

Ex. T(n) = 4T(n/2) + sqrt(n)
a = 4, b = 2  nlogba = n2; f (n) = sqrt(n).
CASE 1: f (n) = O(n2 – ) for  = 1.5.
 T(n) = (n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2  nlogba = n2; f (n) = n2.
CASE 2: f (n) = (n2log0n), that is, k = 0.
 T(n) = (n2log n).
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Master theorem: Examples
Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = (n2 + ) for  = 1
and 4(n/2)3  cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4, b = 2  nlogba = n2; f (n) = n2/logn.
Master method does not apply.  In particular, 
for every constant  > 0, we have log n  o(n).
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Conclusion

• Divide and conquer is just one of several 
powerful techniques for algorithm design. 

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 
method .

• Can lead to more efficient algorithms
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