
9/24/15 CMPS 2200 Introduction to Algorithms 1

CMPS 2200 – Fall 2015

Divide-and-Conquer III
Carola Wenk

Slides courtesy of Charles Leiserson
with changes and additions by Carola Wenk

9/24/15 2

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the
original problem size.

2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.

 Runtime recurrences

CMPS 2200 Introduction to Algorithms

9/24/15 3

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a 1, b > 1, and f is asymptotically
positive.

CMPS 2200 Introduction to Algorithms

9/24/15 4

Example: merge sort
1. Divide: Trivial.
2. Conquer: Recursively sort a=2

subarrays of size n/2=n/b
3. Combine: Linear-time merge, runtime

f(n)O(n)

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining

T(n) = a T(n/b) + f(n)
CMPS 2200 Introduction to Algorithms

9/24/15 5

Master Theorem
T(n) = a T(n/b) + f (n)

CASE 1:
f (n) = O(nlogba –) T(n) = (nlogba)
for some >0

CASE 2:
f (n) = (nlogba logkn) T(n) = (nlogba logk+1n)
for some k≥0

CASE 3:
(i) f (n) = (nlogba +)
for some >0 T(n) = (f (n))
and (ii) a f (n/b) c f (n)
for some c < 1

CMPS 2200 Introduction to Algorithms

9/24/15 6

How to apply the theorem
Compare f (n) with nlogba :

1. f (n) = O(nlogba –) for some constant > 0.
• f (n) grows polynomially slower than nlogba

(by an n factor).
Solution: T(n) = (nlogba) .

2. f (n) = (nlogba logkn) for some constant k 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = (nlogba logk+1n) .

CMPS 2200 Introduction to Algorithms

9/24/15 7

How to apply the theorem

3. f (n) = (nlogba +) for some constant > 0.
• f (n) grows polynomially faster than nlogba (by

an n factor),
and f (n) satisfies the regularity condition that
a f (n/b) c f (n) for some constant c < 1.
Solution: T(n) = (f (n)) .

Compare f (n) with nlogba :

CMPS 2200 Introduction to Algorithms

9/24/15 8

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining
nlogba = nlog22 = n1 = n CASE 2 (k = 0)

 T(n) = (n log n) .

CMPS 2200 Introduction to Algorithms

9/24/15 9

Example: binary search

T(n) = 1 T(n/2) + (1)

subproblems
subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1 CASE 2 (k = 0)
 T(n) = (log n) .

CMPS 2200 Introduction to Algorithms

9/24/15 10

Matrix multiplication:
Divide-and-conquer algorithm

nn matrix = 22 matrix of (n/2)n/2) submatrices:
IDEA:

hg
fe

dc
ba

ut
sr

C = A B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g
u = c·f +d·h

8 recursive mults of (n/2)n/2) submatrices
4 adds of (n/2)n/2) submatrices

CMPS 2200 Introduction to Algorithms

9/24/15 11

Matrix multiplication:
Analysis of D&C algorithm

No better than the ordinary matrix
multiplication algorithm.

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) + (n2)

nlogba = nlog28 = n3 CASE 1 T(n) = (n3)

CMPS 2200 Introduction to Algorithms

9/24/15 12

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)(n/2) submatrices. Form P-terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)(n/2) submatrices.

T(n) = 7 T(n/2) + (n2)
nlogba = nlog27 n2.81 CASE 1 T(n) = (nlog 7)

CMPS 2200 Introduction to Algorithms

9/24/15 13

Master theorem: Examples

Ex. T(n) = 4T(n/2) + sqrt(n)
a = 4, b = 2 nlogba = n2; f (n) = sqrt(n).
CASE 1: f (n) = O(n2 –) for = 1.5.
 T(n) = (n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 nlogba = n2; f (n) = n2.
CASE 2: f (n) = (n2log0n), that is, k = 0.
 T(n) = (n2log n).

CMPS 2200 Introduction to Algorithms

9/24/15 14

Master theorem: Examples
Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2 nlogba = n2; f (n) = n3.
CASE 3: f (n) = (n2 +) for = 1
and 4(n/2)3 cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4, b = 2 nlogba = n2; f (n) = n2/logn.
Master method does not apply. In particular,
for every constant > 0, we have log n o(n).

CMPS 2200 Introduction to Algorithms

9/24/15 15

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method .

• Can lead to more efficient algorithms

CMPS 2200 Introduction to Algorithms

