CMPS 2200 – Fall 2015

Divide-and-Conquer III Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

The divide-and-conquer design paradigm

- **1.** *Divide* the problem (instance) into subproblems of sizes that are fractions of the original problem size.
- 2. *Conquer* the subproblems by solving them recursively.
- 3. *Combine* subproblem solutions.

\Rightarrow Runtime recurrences

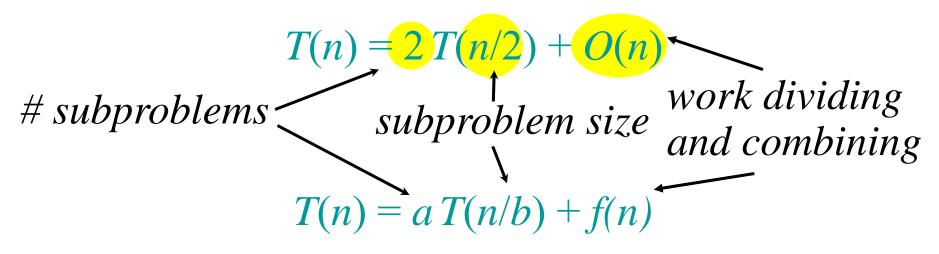
The master method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n),where $a \ge 1, b > 1$, and f is asymptotically positive.

Example: merge sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort a=2 subarrays of size n/2=n/b
- 3. *Combine:* Linear-time merge, runtime $f(n) \in O(n)$



Master Theorem

T(n) = a T(n/b) + f(n)**CASE 1**: $f(n) = O(n^{\log_b a - \varepsilon})$ $\Rightarrow T(n) = \Theta(n^{\log_b a})$ for some $\varepsilon > 0$ **CASE 2**: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ for some $k \ge 0$ **CASE 3**: (i) $f(n) = \Omega(n^{\log_b a + \varepsilon})$ \Rightarrow $T(n) = \Theta(f(n))$ for some $\varepsilon > 0$ and (ii) $a f(n/b) \le c f(n)$ for some c < 1

9/24/15

How to apply the theorem

Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

f(n) grows polynomially slower than n^{logba}
 (by an n^ε factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

2. f(n) = Θ(n^{logba} log^kn) for some constant k ≥ 0.
f(n) and n^{logba} grow at similar rates.
Solution: T(n) = Θ(n^{logba} log^{k+1}n).

How to apply the theorem

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),

and f(n) satisfies the *regularity condition* that $af(n/b) \le cf(n)$ for some constant c < 1. Solution: $T(n) = \Theta(f(n))$.

Example: merge sort

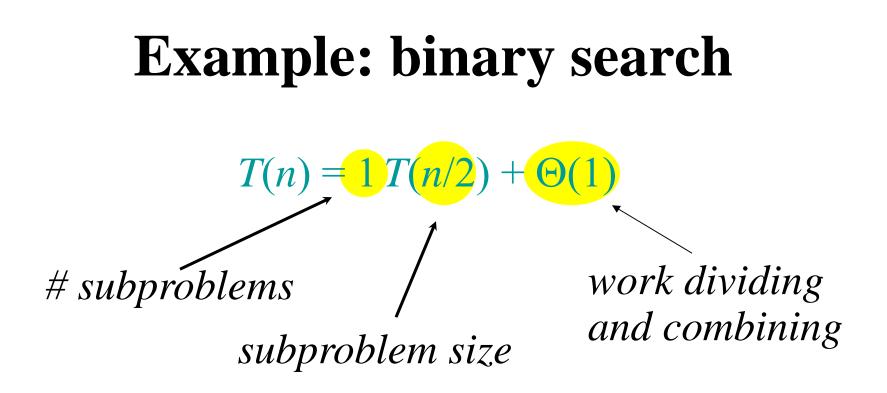
- **1. Divide:** Trivial.
- 2. *Conquer:* Recursively sort 2 subarrays.
- **3.** *Combine*: Linear-time merge.

subproblems subproblem size work dividing

and combining

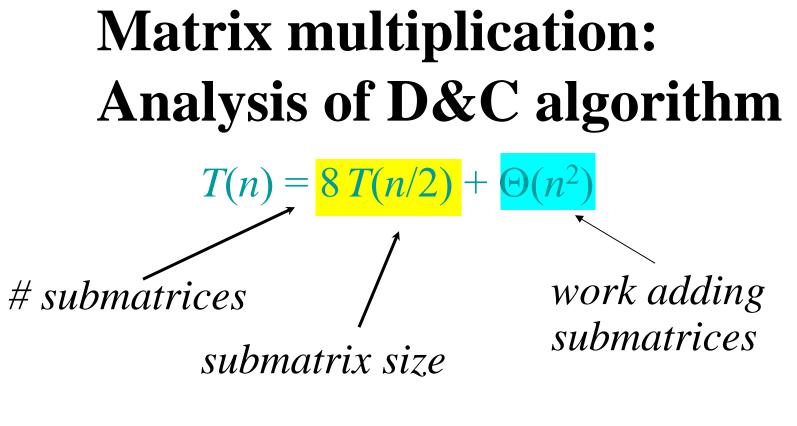
$$n^{\log_b a} = n^{\log_2 2} = n^1 = n \Rightarrow \text{ CASE 2 } (k = 0)$$

$$\Rightarrow T(n) = \Theta(n \log n).$$



$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \implies \text{CASE 2} (k = 0)$$
$$\implies T(n) = \Theta(\log n) .$$

Matrix multiplication: Divide-and-conquer algorithm IDEA: $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices: $\begin{vmatrix} r & s \\ t & \mu \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \cdot \begin{vmatrix} e & f \\ \hline g & h \end{vmatrix}$ $C = A \cdot B$ $r = a \cdot e + b \cdot g$ $s = a \cdot f + b \cdot h$ $t = c \cdot e + d \cdot g$ $u = c \cdot f + d \cdot h$ 8 recursive mults of $(n/2) \times (n/2)$ submatrices 4 adds of $(n/2) \times (n/2)$ submatrices



 $n^{\log_b a} = n^{\log_2 8} = n^3 \implies \mathbf{CASE} \ 1 \implies T(n) = \Theta(n^3)$

No better than the ordinary matrix multiplication algorithm.

Strassen's algorithm

- **1.** *Divide:* Partition *A* and *B* into $(n/2) \times (n/2)$ submatrices. Form *P*-terms to be multiplied using + and -.
- 2. Conquer: Perform 7 multiplications of $(n/2) \times (n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2) \times (n/2)$ submatrices.

 $T(n) = 7 T(n/2) + \Theta(n^2)$

 $n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \text{CASE 1} \implies T(n) = \Theta(n^{\log 7})$

Master theorem: Examples

Ex.
$$T(n) = 4T(n/2) + \operatorname{sqrt}(n)$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = \operatorname{sqrt}(n).$
CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.5$.
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log b^a} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \log^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \log n).$

Master theorem: Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2.$
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\log n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\log n.$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $\log n \in o(n^{\varepsilon})$.

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method .
- Can lead to more efficient algorithms