CMPS 2200 - Fall 2015

Divide-and-Conquer II Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Powering a number

Problem: Compute a^{n}, where $n \in \mathbb{N}$.
Naive algorithm: $\Theta(n)$.
Divide-and-conquer algorithm: (recursive squaring)

$$
\begin{gathered}
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n \text { is even; } \\
a^{(n-1) / 2} \cdot a^{(n-1) / 2} \cdot a & \text { if } n \text { is odd. }\end{cases} \\
T(n)=T(n / 2)+\Theta(1) \Rightarrow T(n)=\Theta(\log n) .
\end{gathered}
$$

Matrix multiplication

$\left.\begin{array}{ll}\text { Input: } & A=\left[a_{i j}\right], B=\left[b_{i j}\right] . \\ \text { Output: } & C=\left[c_{i j}\right]=A \cdot B .\end{array}\right\} i, j=1,2, \ldots, n$.

$$
\begin{gathered}
{\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]} \\
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
\end{gathered}
$$

Standard algorithm

for $i \leftarrow 1$ to n

do for $j \leftarrow 1$ to n

 do $c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}$

Running time $=\Theta\left(n^{3}\right)$

Divide-and-conquer algorithm

Idea:

$n \times n$ matrix $=2 \times 2$ matrix of $(n / 2) \times(n / 2)$ submatrices:

$$
\begin{aligned}
{\left[\begin{array}{l:l}
r & s \\
t & u
\end{array}\right] } & =\left[\begin{array}{l:l}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{c:c}
e & f \\
\hdashline g & h
\end{array}\right] \\
C & =A \cdot B
\end{aligned}
$$

$$
\left.\begin{array}{l}
r=a \cdot e+b \cdot g \\
s=a \cdot f+b \cdot h \\
t=c \cdot e+d \cdot g \\
u=c \cdot f+d \cdot h
\end{array}\right\} 8 \text { recursive mults of }(n / 2) \times(n / 2) \text { submatrices }
$$

Analysis of D\&C algorithm

$$
\text { Solves to } T(n)=\Theta\left(n^{3}\right)=\Theta\left(n^{\log 8}\right)
$$

No better than the ordinary matrix multiplication algorithm.

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
& r=P_{5}+P_{4}-P_{2}+P_{6} \\
& s=P_{1}+P_{2} \\
& t=P_{3}+P_{4} \\
& u=P_{5}+P_{1}-P_{3}-P_{7}
\end{aligned}
$$

7 mults, 18 adds/subs.
Note: No reliance on commutativity of mult!

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
r= & P_{5}+P_{4}-P_{2}+P_{6} \\
= & (a+d)(e+h) \\
& +d(g-e)-(a+b) h \\
& +(b-d)(g+h) \\
= & a e+a h+d e+d h \\
& +d g-d e-a h-b h \\
& +b g+b h-d g-d h \\
= & a e+b g
\end{aligned}
$$

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form P-terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of ($n / 2$) $\times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

Analysis of Strassen

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

$$
\text { Solves to } T(n)=\Theta\left(n^{\log 7}\right)
$$

The number 2.81 may not seem much smaller than 3 , but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \geq 30$ or so.

Best to date (of theoretical interest only): $\Theta\left(n^{2.376 \cdots}\right)$.

