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Powering a number

Problem: Compute a", where n & N.

Naive algorithm: ®(n).

Divide-and

ah= <

-conquer algorithm: (recursive squaring)

Cah/2. gn/2 if niseven:;

ca-bz.g=bz. g jf nis odd.

T(n)=T(n/2) + ©(1) = T(n) =6(logn) .
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Matrix multiplication

Input: A =[a;], B =[b;]. } L
Output: C = [c;] = A-B. L1=12,...,n

Ci1 Cpp - Cn | [@yg & - &gy | [by b - by,

Co1 Co2 =~ Con | |82 @ -+ Apn | |Dpy bpp -+ Doy

Ch1 Ch2 - Cyp dn1 Apo ot dpp bnl bn2 bnn

n
Cij = 2.k - by
=
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Standard algorithm

fori< 1ton
do forj« 1ton
do ¢;; <0
fork« 1ton
do Cjj <= Cjj + ay- Dby,

Running time = ©(n?)
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Divide-and-conguer algorithm

IDEA:

nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

r =a-efFb-g"
s =a:-f#b:h
t =cemdg
u =c:f&d-h_
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8 recursive mults of (n/2)x(n/2) submatrices

>4 adds of (n/2)x(n/2) submatrices
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Analysis of D&C algorithm
T(n) = 8T(n/2) + B(n?)

g |
# submatrices work adding

. submatrices
submatrix size

Solves to T(n) = ®(n3) = ®(n'9?)

No better than the ordinary matrix
multiplication algorithm.
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Strassen’s 1dea

* Multiply 2x2 matrices with only 7 recursive mults.

=a- (f-h) r =P, +P,—P,+Pg

=(a+b)-h s =P, +P,

=(c+d)-e t =P,+P,
U=Ps+P —P3—P;

=(a+d)-(e+h)

=(b-d):(g+h) | mults, 18 adds/subs.
=(a—c)-(e+f) |Note:No reliance on
commutativity of mult!

P =
2
3
;=d-(g-¢)
5
6~
7=
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Strassen’s 1dea

e Multiply 2x2 matrices with only 7 recursive mults.

P, =a-(f-h) r=pP.+P,—P,+P;
,=(@+bh)-h =(a+d)(e+h)
P;=(Cc+d)-e td(g-e)-(a+Db)h
P, =d-(g-¢) +(b—-d)(g +h)
P.=(a+d)-(e+h) = ae +ah + de + dh
Pe=(b-d)-(g+h) + dg —de — ah — bh
P.o=(a-c)-(e+f) + bg + bh — dg — dh

= ae + bg
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Strassen’s algorithm

1. Divide: Partition A and B Into
(n/2)x(n/2) submatrices. Form P-terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n) =7T(n/2) + ©(n?)
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Analysis of Strassen

T(n) =7T(n/2) + ©(n?)
Solves to T(n) = ®(n'o¢7)
The number 2.81 may not seem much smaller than
3, but because the difference Is In the exponent, the
Impact on running time is significant. In fact,

Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 30 or so.

Best to date (of theoretical interest only): ®(n2:376),
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