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Powering a number

Problem: Compute a n, where n N.

a n =
a n/2  a n/2 if n is even;
a (n–1)/2  a (n–1)/2  a if n is odd.

Divide-and-conquer algorithm: (recursive squaring)

T(n) = T(n/2) + (1)   T(n) = (log n) . 

Naive algorithm: (n).

CMPS 2200 Introduction to Algorithms



9/21/15 3

Matrix multiplication
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Input: A = [aij], B = [bij].
Output: C = [cij] = AB. i, j = 1, 2,… , n.
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Standard algorithm

for i  1 to n
do for j  1 to n

do cij  0
for k  1 to n

do cij  cij + aik bkj

Running time = (n3)
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Divide-and-conquer algorithm

nn matrix = 22 matrix of (n/2)n/2) submatrices:
IDEA:
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C = A  B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g
u = c·f +d·h

8 recursive mults of (n/2)n/2) submatrices 
4 adds of (n/2)n/2) submatrices 
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Analysis of D&C algorithm

Solves to T(n) = (n3) (nlog 8) 

# submatrices
submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + (n2)

No better than the ordinary matrix 
multiplication algorithm.
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7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

Strassen’s idea
• Multiply 22 matrices with only 7 recursive mults. 

P1 = a  ( f – h)
P2 = (a + b)  h
P3 = (c + d)  e
P4 = d  (g – e)
P5 = (a + d)  (e + h)
P6 = (b – d)  (g + h)
P7 = (a – c)  (e + f )

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7
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Strassen’s idea
• Multiply 22 matrices with only 7 recursive mults. 

P1 = a  ( f – h)
P2 = (a + b)  h
P3 = (c + d)  e
P4 = d  (g – e)
P5 = (a + d)  (e + h)
P6 = (b – d)  (g + h)
P7 = (a – c)  (e + f )

r = P5 + P4 – P2 + P6
= (a + d) (e + h) 

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh 
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)(n/2) submatrices.  Form P-terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)(n/2) submatrices.

T(n) = 7 T(n/2) + (n2)
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Analysis of Strassen
T(n) = 7 T(n/2) + (n2)

Solves to T(n) = (nlog 7)

Best to date (of theoretical interest only): (n2.376).

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n  30 or so.
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