CMPS 2200 – Fall 2015

Divide-and-Conquer Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Introduction to Algorithms

The divide-and-conquer design paradigm

- **1.** *Divide* the problem (instance) into subproblems of sizes that are fractions of the original problem size.
- 2. *Conquer* the subproblems by solving them recursively.
- 3. *Combine* subproblem solutions.

Find an element in a sorted array:

1. *Divide:* Check middle element.

2. Conquer: Recursively search 1 subarray.

3. *Combine:* Trivial.

Example: Find 9

Find an element in a sorted array:

1. *Divide:* Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

1. *Divide:* Check middle element.

2. *Conquer:* Recursively search 1 subarray.

3. *Combine:* Trivial.

Example: Find 9

Find an element in a sorted array:

1. *Divide:* Check middle element.

2. *Conquer:* Recursively search 1 subarray.

3. *Combine:* Trivial.

Example: Find 9

Find an element in a sorted array:

1. *Divide*: Check middle element.

2. *Conquer:* Recursively search 1 subarray.

3. *Combine:* Trivial.

Example: Find 9

Find an element in a sorted array:

1. *Divide:* Check middle element.

2. *Conquer:* Recursively search 1 subarray.

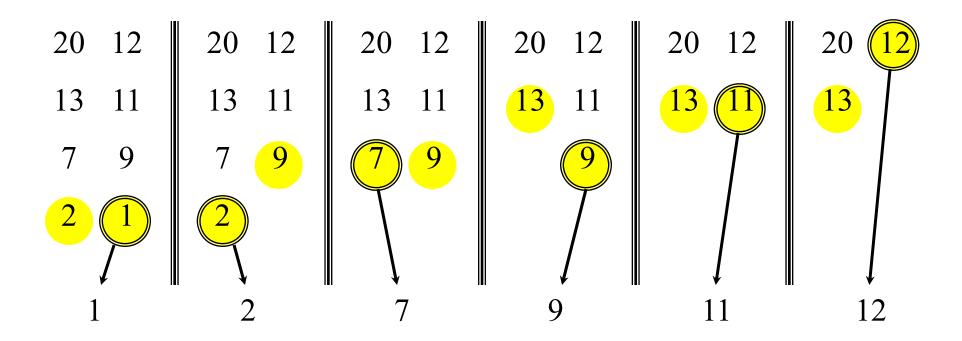
3. *Combine:* Trivial.

Example: Find 9

Merge sort

- **1.** *Divide:* Trivial.
- **2.** Conquer: Recursively sort 2 subarrays of size n/2
- 3. *Combine:* Linear-time key subroutine MERGE
 - MERGE-SORT $(A[0 \dots n-1])$
 - 1. If n = 1, done.
 - **2.** Merge-Sort (A[0..[n/2]-1])
 - **3.** Merge-Sort ($A[\lceil n/2 \rceil ... n-1]$)
 - 4. "*Merge*" the 2 sorted lists.

Merging two sorted arrays



Time $dn \in \Theta(n)$ to merge a total of *n* elements (linear time).

CMPS 2200 Introduction to Algorithms

Analyzing merge sort

T(n) d_0 T(n/2) T(n/2) dn

MERGE-SORT (A[0 ... n-1]) 1. If n = 1, done. 2. MERGE-SORT ($A[0 ... \lceil n/2 \rceil + 1]$)

3. Merge-Sort
$$(A[\lceil n/2 \rceil . . . n-1])$$

4. "*Merge*" the 2 sorted lists.

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

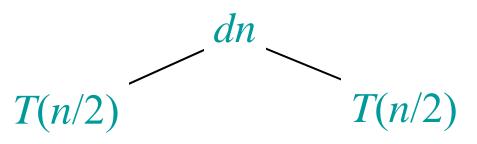
Recurrence for merge sort

$$T(n) = \begin{cases} d_0 \text{ if } n = 1; \\ 2T(n/2) + dn \text{ if } n > 1. \end{cases}$$

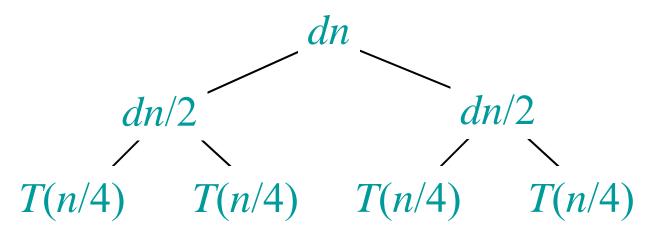
• But what does
$$T(n)$$
 solve to? I.e., is it $O(n)$ or $O(n^2)$ or $O(n^3)$ or ...?

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. T(n)

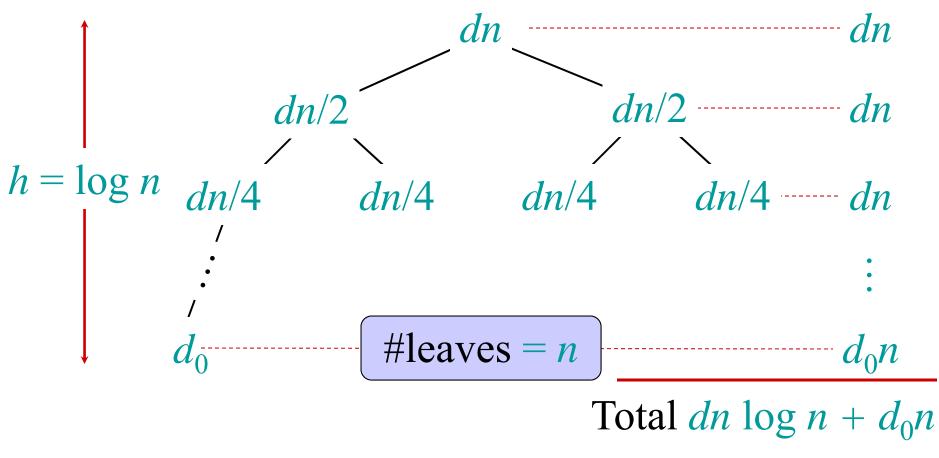
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.



Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.



Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.



Mergesort Conclusions

- Merge sort runs in $\Theta(n \log n)$ time.
- $\Theta(n \log n)$ grows more slowly than $\Theta(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for n > 30 or so. (Why not earlier?)

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- It is good for generating **guesses** of what the runtime could be.

But: Need to **verify** that the guess is correct. \rightarrow Induction (substitution method)

Substitution method

The most general method to solve a recurrence (prove O and Ω separately):

Guess the form of the solution: (e.g. using recursion trees, or expansion)
Verify by induction (inductive step).
Solve for O-constants n₀ and c (base case of induction)