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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems of sizes that are fractions of the 
original problem size.

2. Conquer the subproblems by solving them 
recursively.

3. Combine subproblem solutions.
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
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Merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[ 0 . . n/2 -1])
3. MERGE-SORT (A[ n/2 . . n-1 ])
4. “Merge” the 2 sorted lists.

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size n/2
3. Combine: Linear-time key subroutine MERGE
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Merging two sorted arrays
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Time dn  (n) to merge a total 
of n elements (linear time).
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Analyzing merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[ 0 . . n/2+1])
3. MERGE-SORT (A[ n/2 . . n-1 ])
4. “Merge” the 2 sorted lists.

T(n)
d0
T(n/2)
T(n/2)
dn

Sloppiness: Should be T( n/2 ) + T( n/2 ) , 
but it turns out not to matter asymptotically.
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Recurrence for merge sort

T(n) =
d0 if n = 1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it 
O(n) or O(n2) or O(n3) or …?
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2



9/18/15 CMPS 2200 Introduction to Algorithms 16

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

d0

h = log n

dn

dn

dn

…

#leaves = n d0n
Total dn log n + d0n
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Mergesort Conclusions

• Merge sort runs in (n log n) time.
• (n log n) grows more slowly than (n2).
• Therefore, merge sort asymptotically beats 

insertion sort in the worst case.
• In practice, merge sort beats insertion sort 

for n > 30 or so. (Why not earlier?)
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Recursion-tree method

• A recursion tree models the costs (time) of a 
recursive execution of an algorithm.

• The recursion-tree method can be unreliable, 
just like any method that uses ellipses (…).

• It is good for generating guesses of what the 
runtime could be. 

But: Need to verify that the guess is correct.
→ Induction (substitution method)
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Substitution method

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of 

induction)

The most general method to solve a recurrence 
(prove O and  separately):


