
9/18/15 CMPS 2200 Introduction to Algorithms 1

CMPS 2200 – Fall 2015

Divide-and-Conquer
Carola Wenk

Slides courtesy of Charles Leiserson
with changes and additions by Carola Wenk

9/18/15 2

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the
original problem size.

2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.

CMPS 2200 Introduction to Algorithms

9/18/15 3

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CMPS 2200 Introduction to Algorithms

9/18/15 4

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CMPS 2200 Introduction to Algorithms

9/18/15 5

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CMPS 2200 Introduction to Algorithms

9/18/15 6

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CMPS 2200 Introduction to Algorithms

9/18/15 7

Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

CMPS 2200 Introduction to Algorithms

9/18/15 8

Binary search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

CMPS 2200 Introduction to Algorithms

9/18/15 CMPS 2200 Introduction to Algorithms 9

Merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[0 . . n/2 -1])
3. MERGE-SORT (A[n/2 . . n-1])
4. “Merge” the 2 sorted lists.

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size n/2
3. Combine: Linear-time key subroutine MERGE

9/18/15 CMPS 2200 Introduction to Algorithms 10

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time dn  (n) to merge a total
of n elements (linear time).

9/18/15 CMPS 2200 Introduction to Algorithms 11

Analyzing merge sort

MERGE-SORT (A[0 . . n-1])
1. If n = 1, done.
2. MERGE-SORT (A[0 . . n/2+1])
3. MERGE-SORT (A[n/2 . . n-1])
4. “Merge” the 2 sorted lists.

T(n)
d0
T(n/2)
T(n/2)
dn

Sloppiness: Should be T(n/2) + T(n/2) ,
but it turns out not to matter asymptotically.

9/18/15 CMPS 2200 Introduction to Algorithms 12

Recurrence for merge sort

T(n) =
d0 if n = 1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it
O(n) or O(n2) or O(n3) or …?

9/18/15 CMPS 2200 Introduction to Algorithms 13

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)

9/18/15 CMPS 2200 Introduction to Algorithms 14

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn

9/18/15 CMPS 2200 Introduction to Algorithms 15

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2

9/18/15 CMPS 2200 Introduction to Algorithms 16

Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

d0

h = log n

dn

dn

dn

…

#leaves = n d0n
Total dn log n + d0n

9/18/15 CMPS 2200 Introduction to Algorithms 17

Mergesort Conclusions

• Merge sort runs in (n log n) time.
• (n log n) grows more slowly than (n2).
• Therefore, merge sort asymptotically beats

insertion sort in the worst case.
• In practice, merge sort beats insertion sort

for n > 30 or so. (Why not earlier?)

9/18/15 CMPS 2200 Introduction to Algorithms 18

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• It is good for generating guesses of what the
runtime could be.

But: Need to verify that the guess is correct.
→ Induction (substitution method)

9/18/15 CMPS 2200 Introduction to Algorithms 19

Substitution method

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of

induction)

The most general method to solve a recurrence
(prove O and  separately):

