
11/9/2015 CMPS 2200 Intro. to Algorithms 1

CMPS 2200 – Fall 2015

Amortized Analysis
Carola Wenk

Slides courtesy of Charles Leiserson
with changes by Carola Wenk

11/9/2015 CMPS 2200 Intro. to Algorithms 2

Dynamic tables

Problem: We may not know the proper size in
advance!

Task: Store a dynamic set in a table/array. Elements
can only be inserted, and all inserted elements are
stored in one contiguous part in the array. The table
should be as small as possible, but large enough so
that it won’t overflow.

IDEA: Whenever the table overflows, “grow” it by
allocating (via malloc or new) a new, larger table.
Move all items from the old table into the new one,
and free the storage for the old table.

Solution: Dynamic tables.

11/9/2015 CMPS 2200 Intro. to Algorithms 3

Example of a dynamic table

1. INSERT 1

2. INSERT overflow

11/9/2015 CMPS 2200 Intro. to Algorithms 4

1

Example of a dynamic table

1. INSERT
2. INSERT overflow

11/9/2015 CMPS 2200 Intro. to Algorithms 5

1
2

Example of a dynamic table

1. INSERT
2. INSERT

11/9/2015 CMPS 2200 Intro. to Algorithms 6

Example of a dynamic table

1. INSERT
2. INSERT

1
2

3. INSERT overflow

11/9/2015 CMPS 2200 Intro. to Algorithms 7

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

overflow

11/9/2015 CMPS 2200 Intro. to Algorithms 8

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

11/9/2015 CMPS 2200 Intro. to Algorithms 9

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT 4

3
2
1

11/9/2015 CMPS 2200 Intro. to Algorithms 10

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

11/9/2015 CMPS 2200 Intro. to Algorithms 11

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

11/9/2015 CMPS 2200 Intro. to Algorithms 12

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

11/9/2015 CMPS 2200 Intro. to Algorithms 13

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT

6. INSERT 6
5. INSERT 5

4
3
2
1

77. INSERT

11/9/2015 CMPS 2200 Intro. to Algorithms 14

Worst-case analysis

Consider a sequence of n insertions. The
worst-case time to execute one insertion is
(n). Therefore, the worst-case time for n
insertions is n ·(n) = (n2).

NO! In fact, the worst-case cost for n
insertions is only (n) (n2).

Let’s see why.

11/9/2015 CMPS 2200 Intro. to Algorithms 15

Tighter analysis

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

Let ci = the cost of the i th insertion

ci

11/9/2015 CMPS 2200 Intro. to Algorithms 16

Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
? ? ? ? ? ? ? ? ? ?

ci

11/9/2015 CMPS 2200 Intro. to Algorithms 17

Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci

11/9/2015 CMPS 2200 Intro. to Algorithms 18

Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci 1 2 3 1 5 1 1 1 9 1

11/9/2015 CMPS 2200 Intro. to Algorithms 19

Tighter analysis (continued)

)(
3

2

)1log(

0

1

n
n

n

c

n

j

j

n

i
i

Cost of n insertions

.

Thus, the average cost of each dynamic-table
operation is (n)/n = (1).

11/9/2015 CMPS 2200 Intro. to Algorithms 20

Amortized analysis
An amortized analysis is any strategy for
analyzing a sequence of operations:
• compute the total cost of the sequence, OR

• amortized cost of an operation = average
cost per operation, averaged over the number
of operations in the sequence

• amortized cost can be small, even though a
single operation within the sequence might be
expensive

11/9/2015 CMPS 2200 Intro. to Algorithms 21

Amortized analysis

Even though we’re taking averages, however,
probability is not involved!

• An amortized analysis guarantees the
average performance of each operation in
the worst case.

11/9/2015 CMPS 2200 Intro. to Algorithms 22

Types of amortized analyses
Three common amortization arguments:
• the aggregate method,
• the accounting method,
• the potential method.
We’ve just seen an aggregate analysis.
The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

11/9/2015 CMPS 2200 Intro. to Algorithms 23

Accounting method
• Charge i th operation a fictitious amortized cost ĉi,

where $1 pays for 1 unit of work (i.e., time).
• This fee is consumed to perform the operation, and
• any amount not immediately consumed is stored in

the bank for use by subsequent operations.
• The bank balance must not go negative! We must

ensure that

n

i
i

n

i
i cc

11
ˆ

for all n.
• Thus, the total amortized costs provide an upper

bound on the total true costs.

11/9/2015 CMPS 2200 Intro. to Algorithms 24

$0 $0 $0 $0 $2 $2

Example:
$2 $2

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

11/9/2015 CMPS 2200 Intro. to Algorithms 25

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

$0 $0 $0 $0 $0 $0 $0 $0

11/9/2015 CMPS 2200 Intro. to Algorithms 26

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

$0 $0 $0 $0 $0 $0 $0 $0 $2 $2 $2

11/9/2015 CMPS 2200 Intro. to Algorithms 27

Accounting analysis
(continued)

Key invariant: Bank balance never drops below 0.
Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
ĉi 3 3 3 3 3 3 3 3 3 3

banki 2 3 3 5 3 5 7 9 3 5

11/9/2015 CMPS 2200 Intro. to Algorithms 28

Incrementing a Binary Counter
Given: A k-bit binary counter A[0,1,…,k-1], initialized with

0,0,…,0. The counter supports the following INCREMENT
operation:

INCREMENT(A) // increases counter by 1
i 0
while i<length(A) and A[i]=1 do

A[i] 0
i++

if i<length(A) then
A[i] 1

• Question: In a sequence of n INCREMENT operations, what is
the amortized runtime of one INCREMENT operation?

11/9/2015 CMPS 2200 Intro. to Algorithms 29

Binary Counter Example

Initial counter 0 0 0 0 0 0 0 0
After 1 increment 0 0 0 0 0 0 0 1
After 2 increments 0 0 0 0 0 0 1 0
After 3 increments 0 0 0 0 0 0 1 1
After 4 increments 0 0 0 0 0 1 0 0
After 5 increments 0 0 0 0 0 1 0 1
After 6 increments 0 0 0 0 0 1 1 0
After 7 increments 0 0 0 0 0 1 1 1
After 8 increments 0 0 0 0 1 0 0 0
After 9 increments 0 0 0 0 1 0 0 1

Example for k=8 and n=9:

• The worst-case runtime of one INCREMENT operation is O(k)
• For n operations the total is O(nk)

10
flip

01
flip

$1
$1$1

$1$2
$1

$1

$1$1
$1
$1$3
$1

11/9/2015 CMPS 2200 Intro. to Algorithms 30

Accounting Method
• Charge $2 to set a bit to 1 (01 flip)

 $1 pays for the actual flip

 Store $1 on the bit as credit to be used later when this bit is
flipped back to 0

• Charge $0 to set a bit to 0 (10 flip)

 Every 1 in the counter has $1 credit on it, which is used to
pay for this flip

• The bank balance is never negative, since each 01 flip pays for
its own cost, and each 10 flip is prepaid by the $1 credit on it.

11/9/2015 CMPS 2200 Intro. to Algorithms 31

Binary Counter Example

Initial counter 0 0 0 0 0 0 0 0
After 1 increment 0 0 0 0 0 0 0 1
After 2 increments 0 0 0 0 0 0 1 0
After 3 increments 0 0 0 0 0 0 1 1
After 4 increments 0 0 0 0 0 1 0 0
After 5 increments 0 0 0 0 0 1 0 1
After 6 increments 0 0 0 0 0 1 1 0
After 7 increments 0 0 0 0 0 1 1 1
After 8 increments 0 0 0 0 1 0 0 0
After 9 increments 0 0 0 0 1 0 0 1

Example for k=8 and n=9:
10
flip

01
flip

$1
$1$1

$1$2
$1

$1

$1$1
$1
$1$3
$1

10
flip

01
flip

$2
$2$0

$2$0
$2

$2

$2$0
$2
$2$0
$2

Actual cost Amortized cost

11/9/2015 CMPS 2200 Intro. to Algorithms 32

Accounting Method

 Since each INCREMENT operation is composed of
one 01 flip and possibly multiple 10 flips, the
amortized runtime of one INCREMENT operation is
O(1).

11/9/2015 CMPS 2200 Intro. to Algorithms 33

Conclusions
• Amortized costs can provide a clean abstraction

of data-structure performance.
• Any of the analysis methods can be used when

an amortized analysis is called for, but each
method has some situations where it is arguably
the simplest.

• Different schemes may work for assigning
amortized costs in the accounting method,
sometimes yielding radically different bounds.

