CSMPS 2200 – Fall 15

Minimum Spanning Trees Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Minimum spanning trees

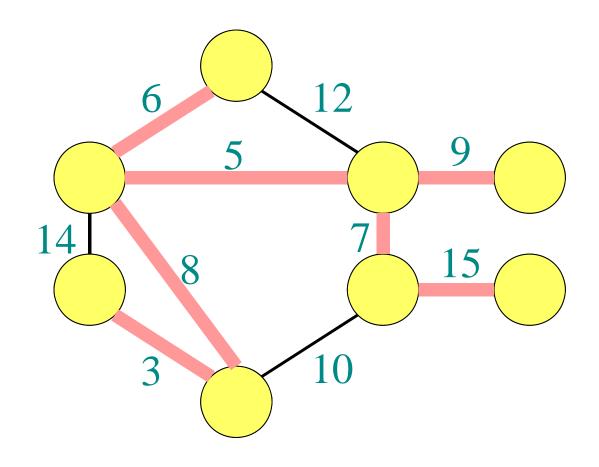
Input: A connected, undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.

• For simplicity, assume that all edge weights are distinct.

Output: A spanning tree T — a tree that connects all vertices — of minimum weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

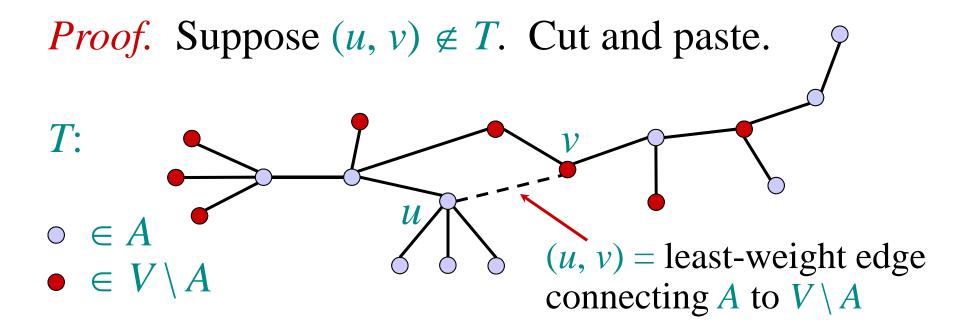
Example of MST

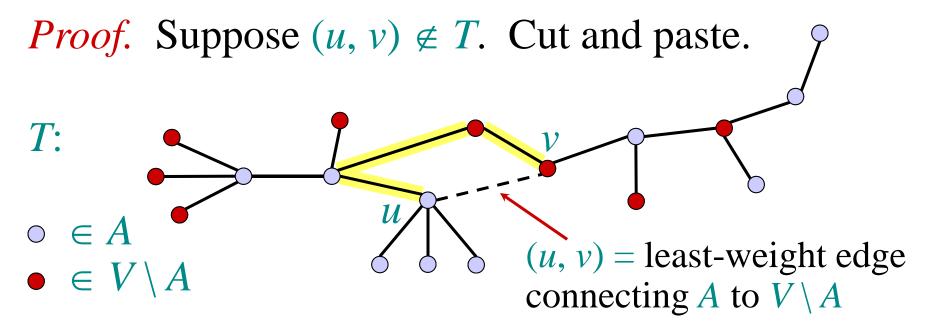


Hallmark for "greedy" algorithms

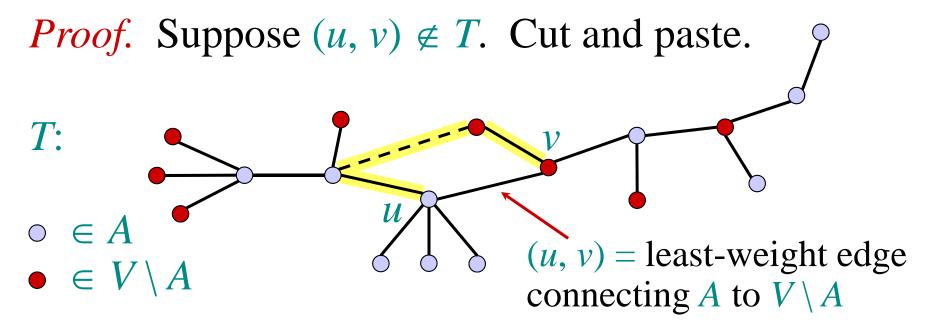
Greedy-choice property
A locally optimal choice
is globally optimal.

Theorem [Cut property]. Let G = (V, E) and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V \setminus A$. Then, (u, v) is contained in an MST T of G.

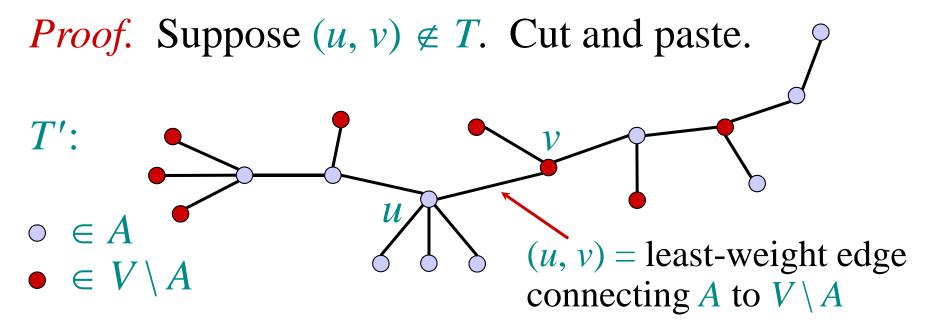




Consider the unique simple path from u to v in T.



Consider the unique simple path from u to v in T. Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V \setminus A$.



Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V \setminus A$.

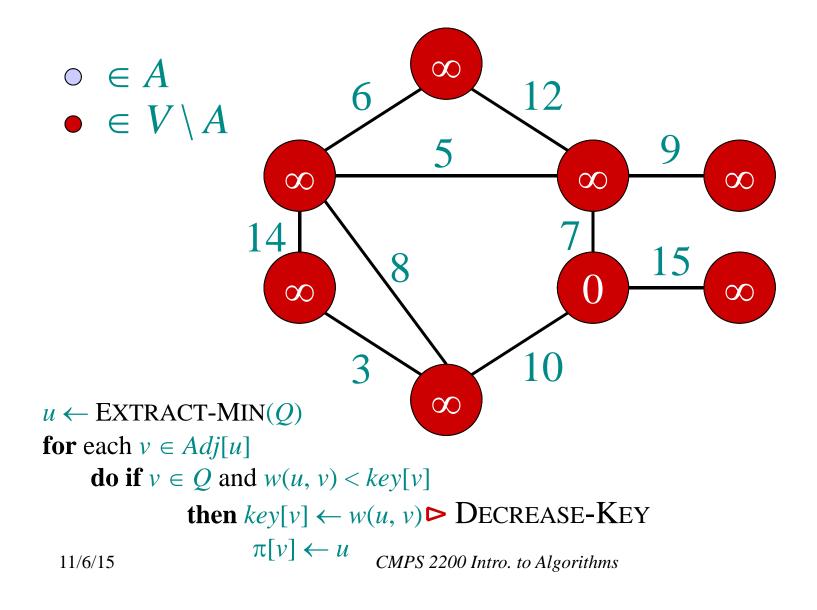
A lighter-weight spanning tree than *T* results.

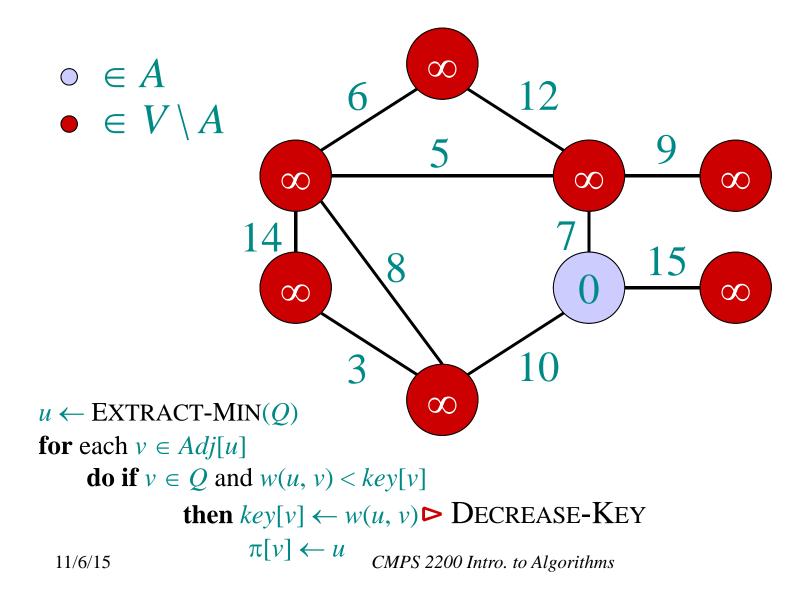
Prim's algorithm

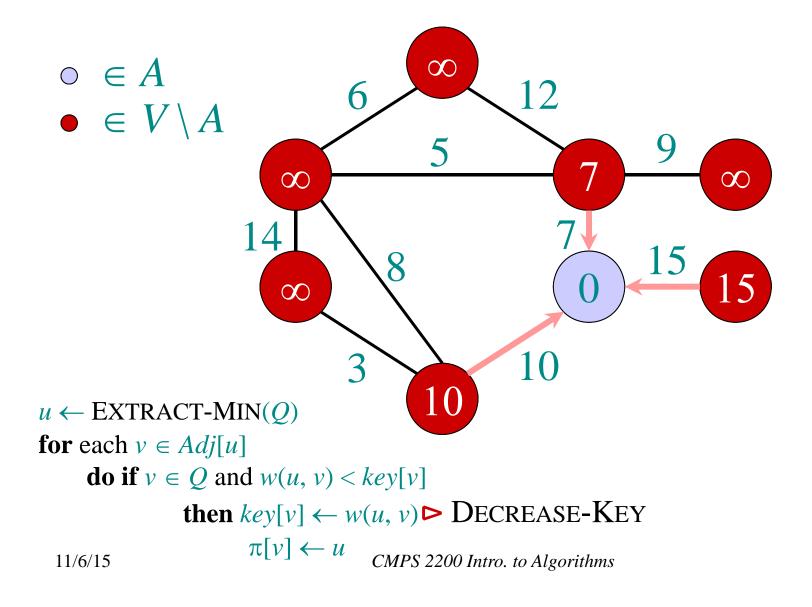
IDEA: Maintain $V \setminus A$ as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.

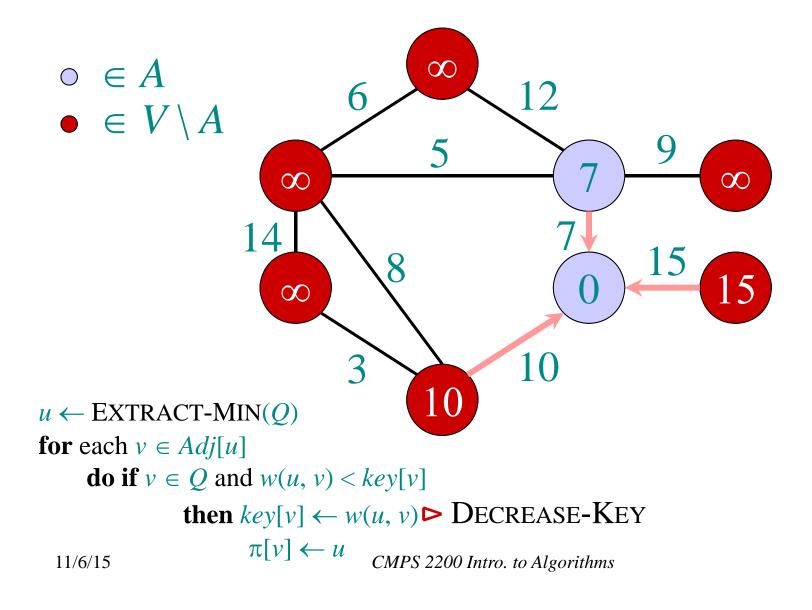
```
Dijkstra:
Q \leftarrow V
                                                           while Q \neq \emptyset do
key[v] \leftarrow \infty for all v \in V
                                                              u \leftarrow \text{EXTRACT-MIN}(Q)
key[s] \leftarrow 0 for some arbitrary s \in V
                                                              S \leftarrow S \cup \{u\}
while Q \neq \emptyset
                                                              for each v \in Adj[u] do
     do u \leftarrow \text{EXTRACT-MIN}(Q)
                                                                if d[v] > d[u] + w(u, v) then
          for each v \in Adj[u]
                                                                  d[v] \leftarrow d[u] + w(u, v)
                do if v \in Q and w(u, v) < key[v]
                                                                ▶ Decrease-Key
                          then key[v] \leftarrow w(u, v)
                                  \pi[v] \leftarrow u
```

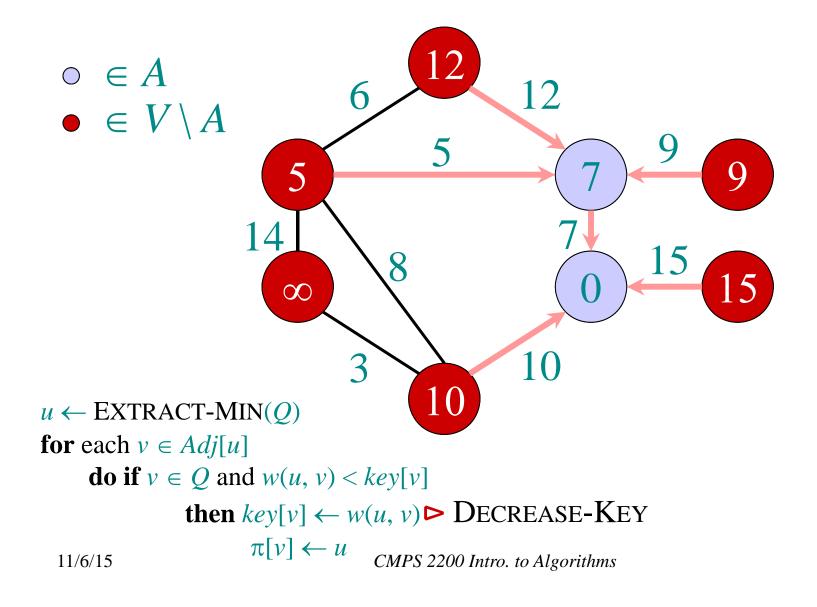
At the end, $\{(v, \pi[v])\}$ forms the MST edges.

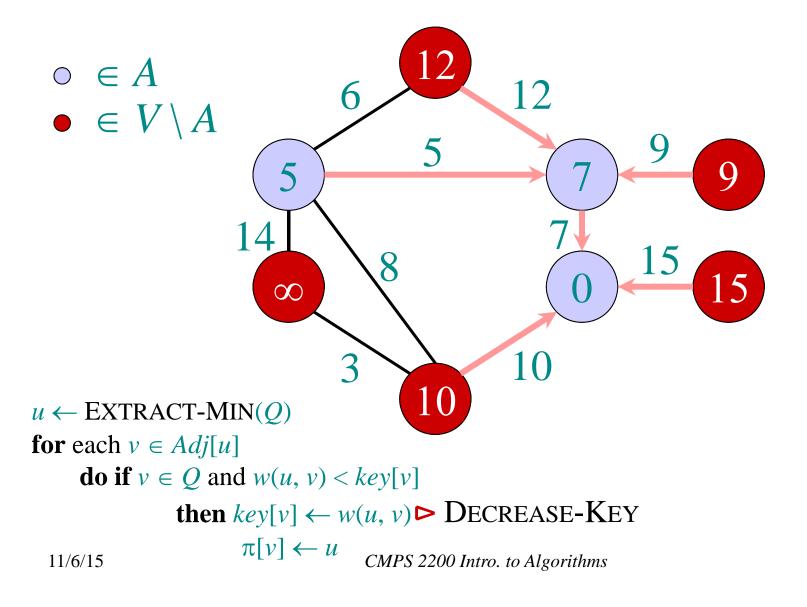


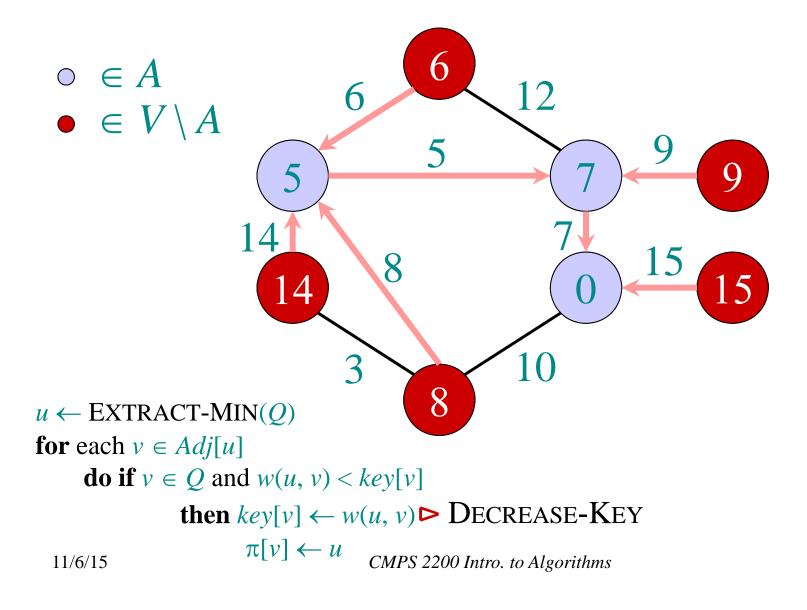


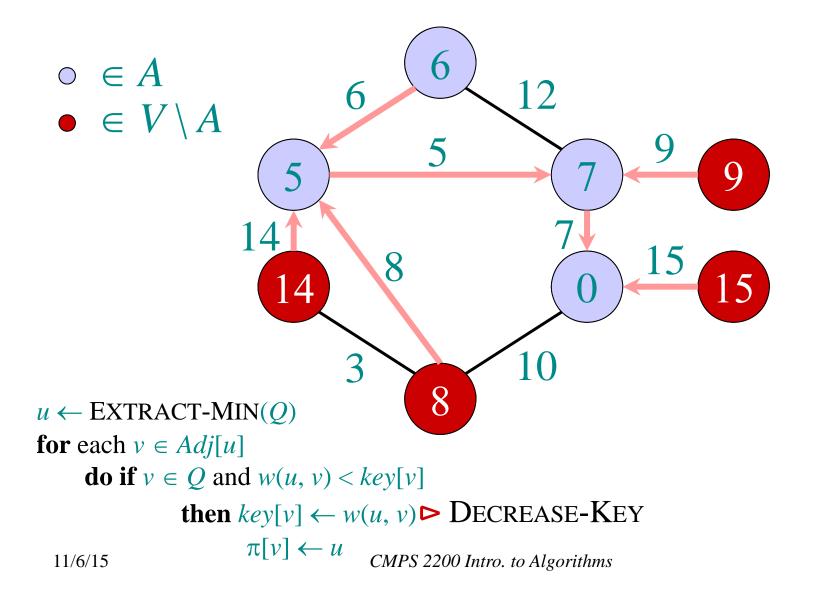


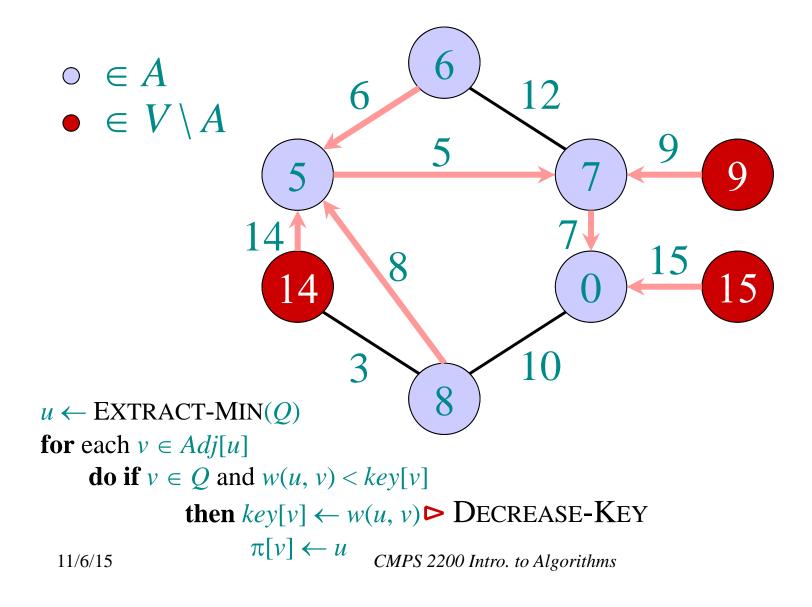


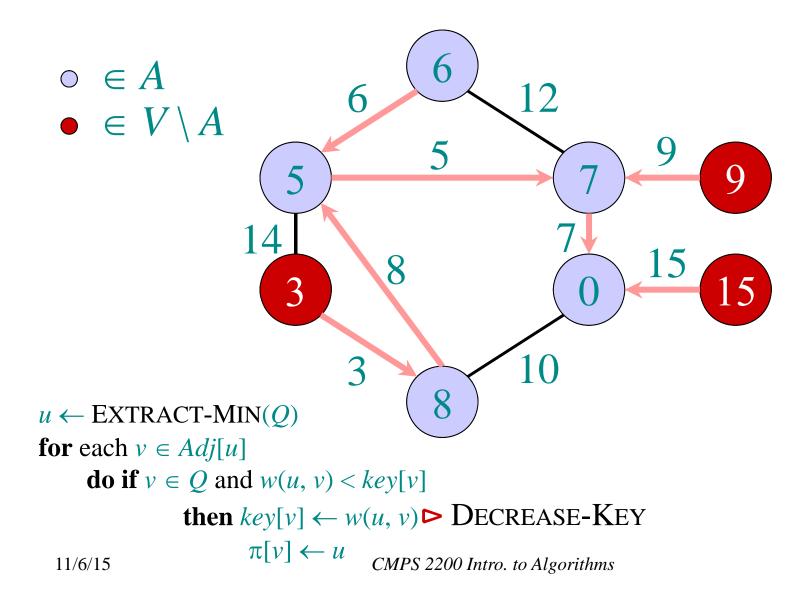


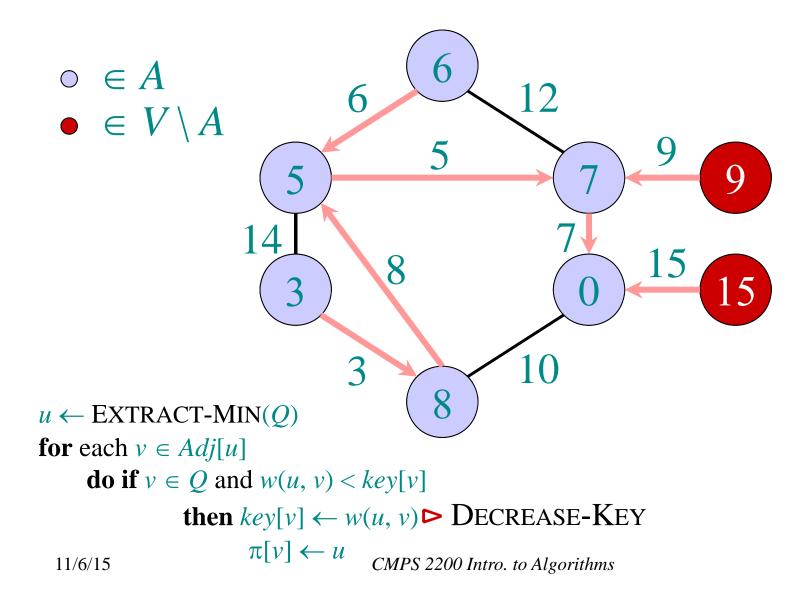


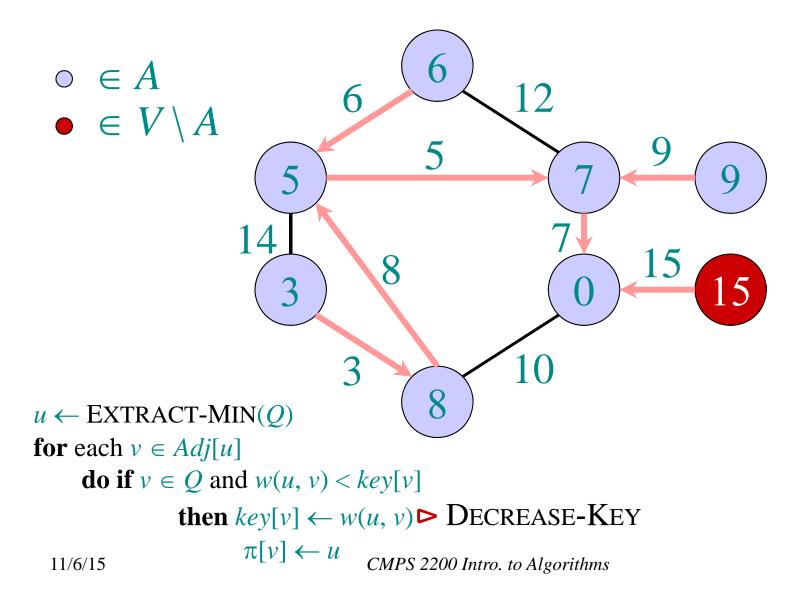


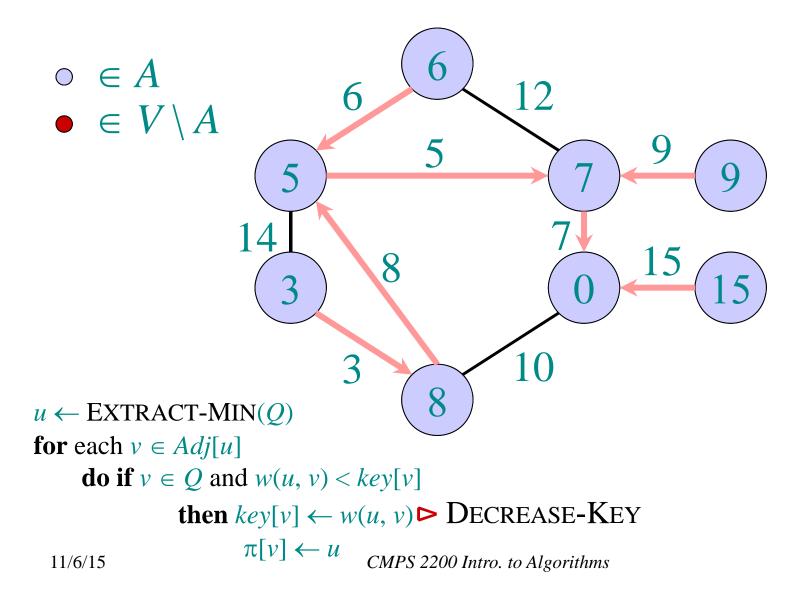












Analysis of Prim

```
\Theta(|V|) \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
                    while Q \neq \emptyset
                         \mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(Q)
                               for each v \in Adj[u]
      degree(u) times
                              do if v \in Q and w(u, v) < key[v]
                                 then key[v] \leftarrow w(u, v)
```

Handshaking Lemma $\Rightarrow \Theta(|E|)$ implicit Decrease-Key's.

Time =
$$\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$$

Analysis of Prim (continued)

Time =
$$\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$$

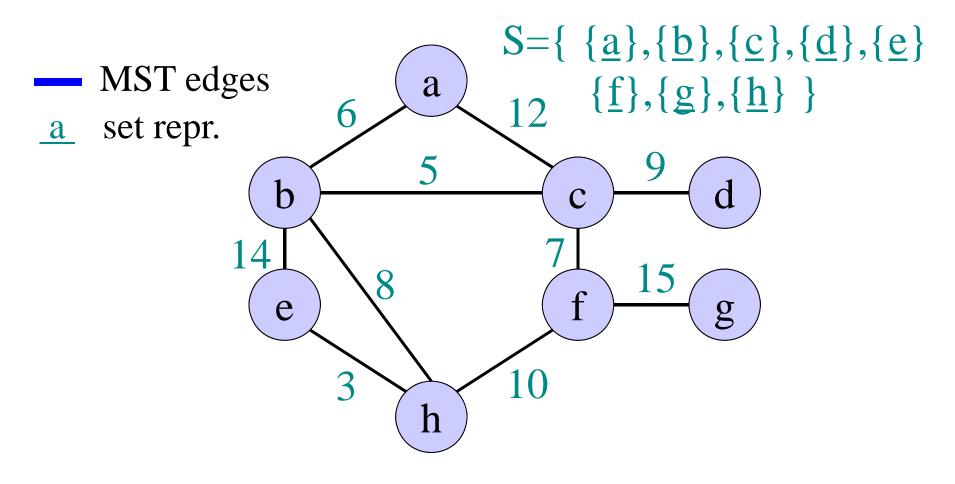
Q	T _{EXTRACT-MIN}	T _{DECREASE-KI}	Total
array	O(V/)	<i>O</i> (1)	$O(V ^2)$
binary heap	$O(\log V/)$	$O(\log V)$	$O(E/\log V/)$
Fibonacci heap	i $O(\log V)$ amortized	O(1) O amortized	$(E/ + V/\log V/)$ worst case

Kruskal's algorithm

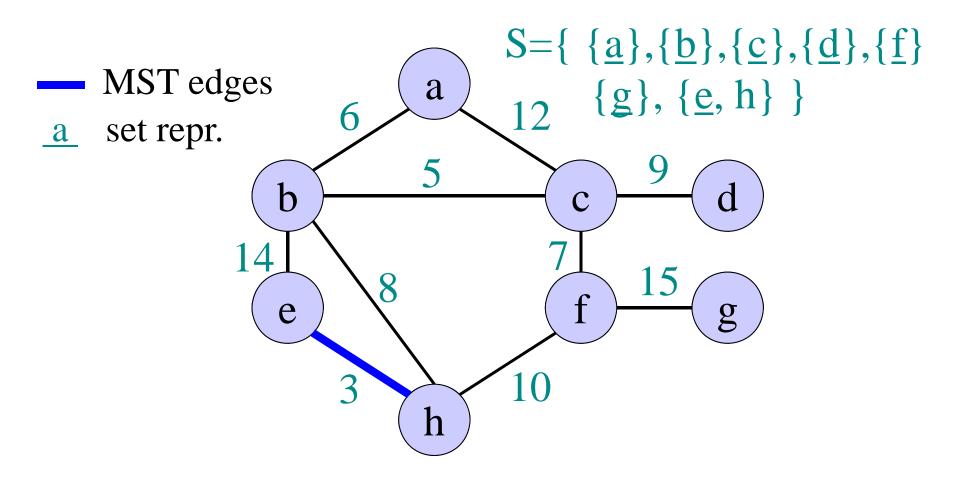
IDEA (again greedy):

Repeatedly pick edge with smallest weight as long as it does not form a cycle.

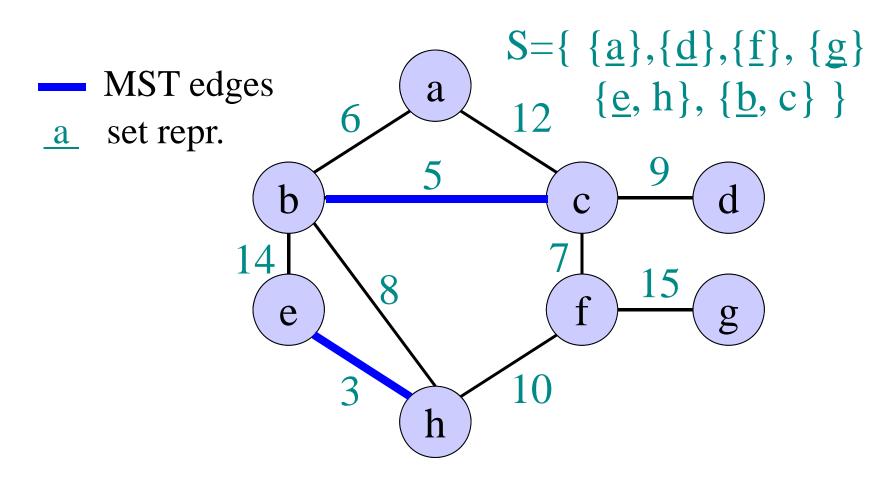
- The algorithm creates a set of trees (a **forest**)
- During the algorithm the added edges merge the trees together, such that in the end only one tree remains
- Correctness: Next edge e connects two components T_1 , T_2 . It is the lightest edge which does not produce a cycle, hence it is also the lightest edge between T_1 and $V\backslash T_1$ and therefore satisfies the cut property.

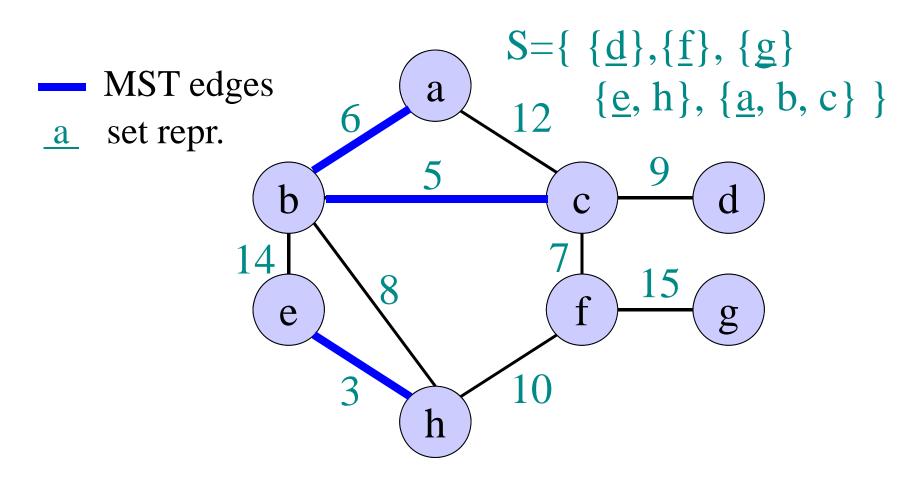


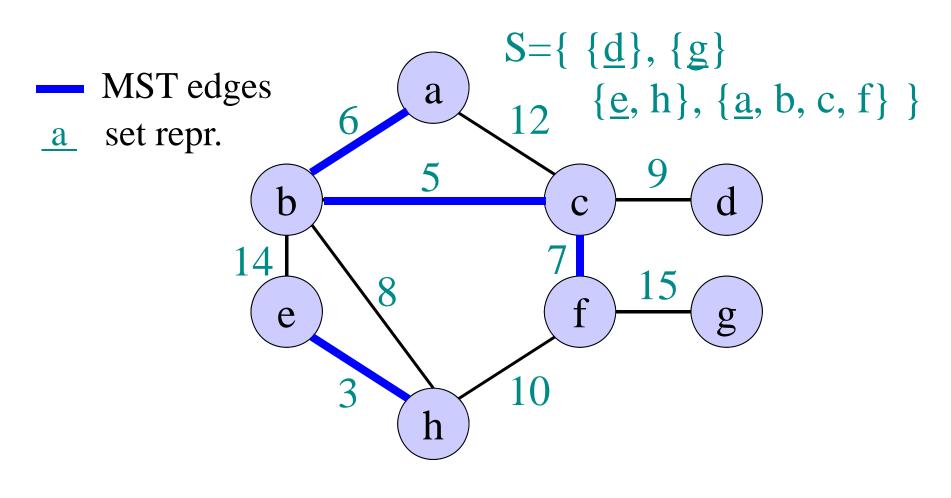
Every node is a single tree.

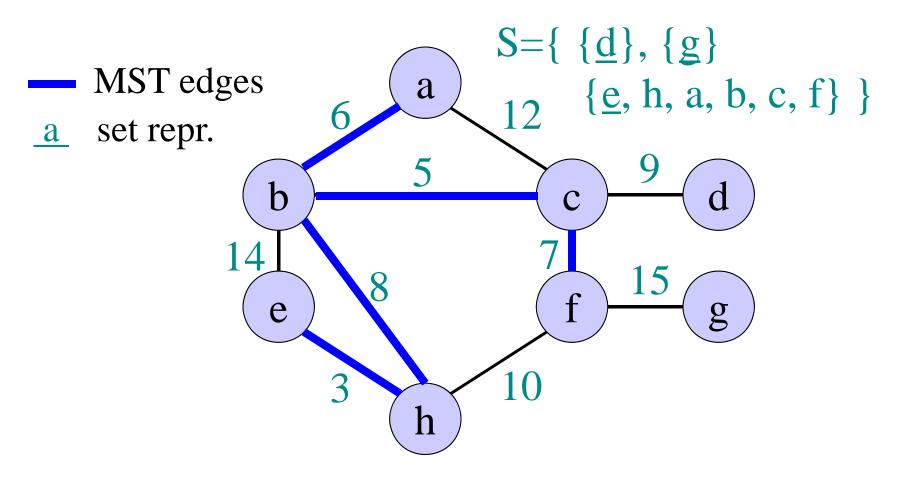


Edge 3 merged two singleton trees.

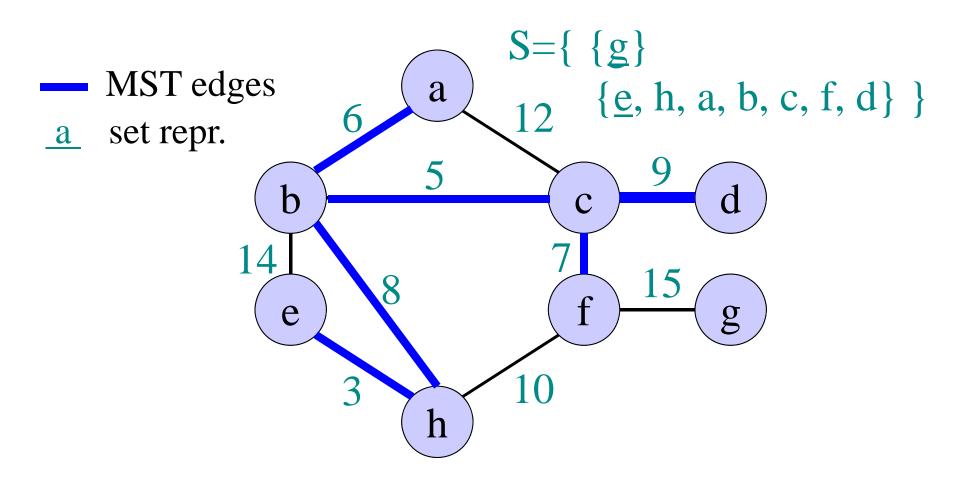


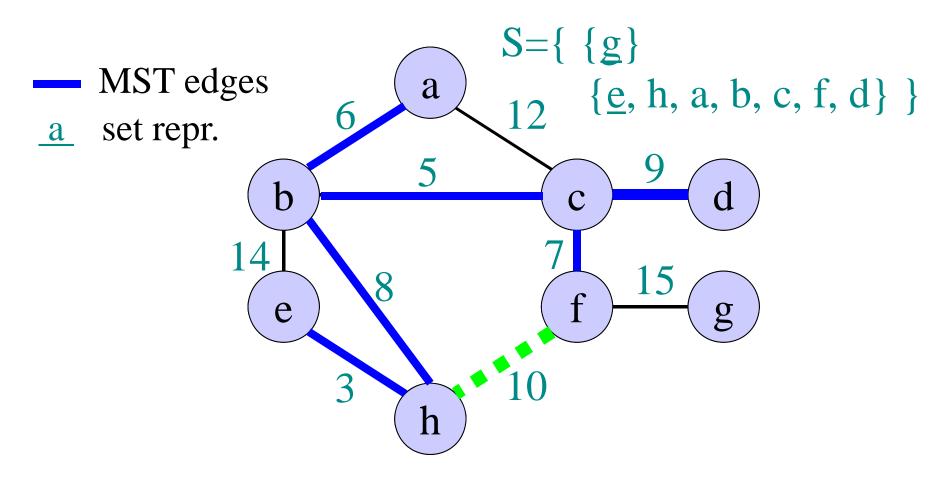




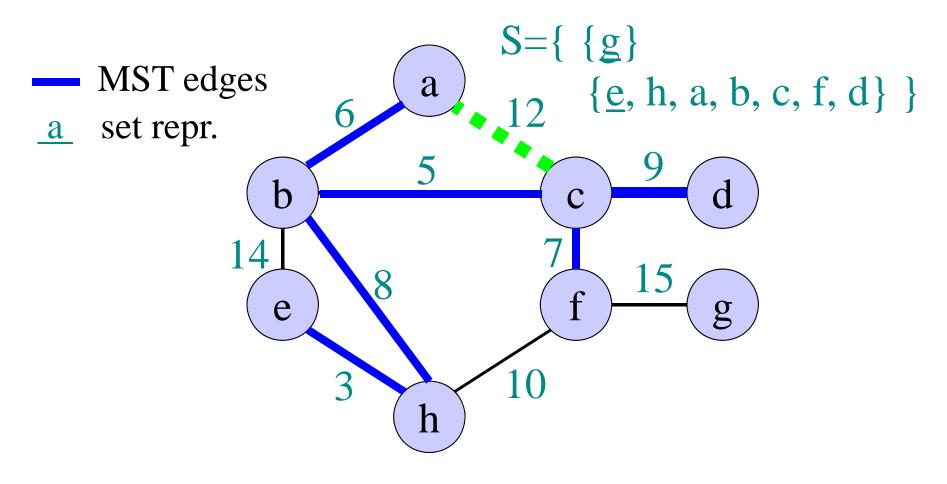


Edge 8 merged the two bigger trees.

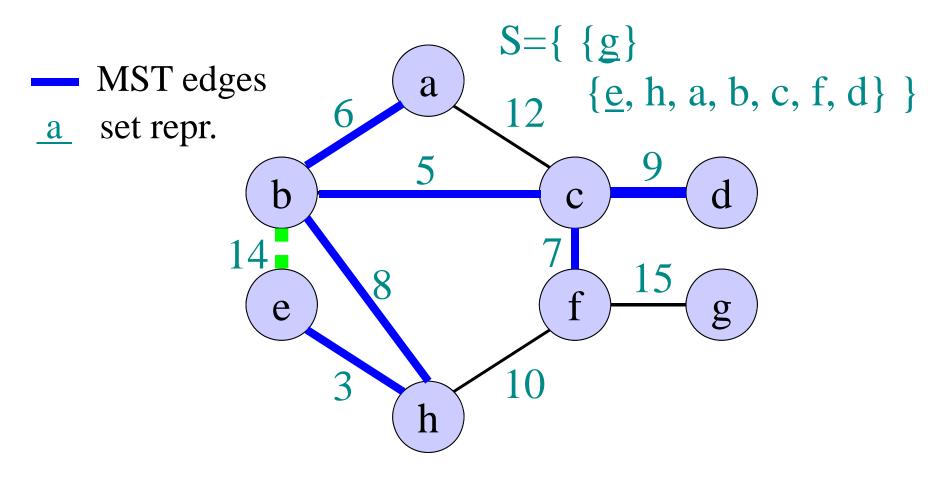




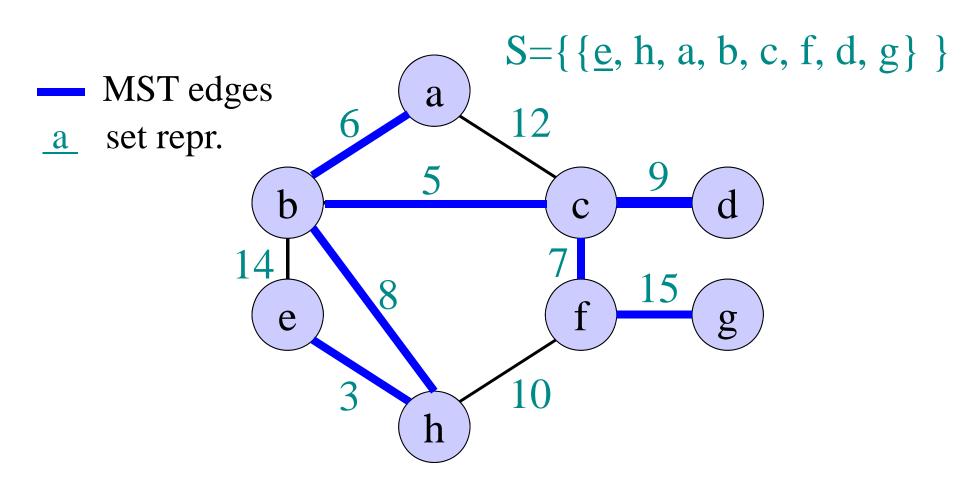
Skip edge 10 as it would cause a cycle.



Skip edge 12 as it would cause a cycle.



Skip edge 14 as it would cause a cycle.



Disjoint-set data structure (Union-Find)

- Maintains a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}$.
- Each set S_i has one element distinguished as the **representative** element.
- Supports operations:
- O(1) MAKE-SET(x): adds new set $\{x\}$ to S
- $O(\alpha(n))$ Union(x, y): replaces sets S_x , S_y with $S_x \cup S_y$
- $O(\alpha(n))$ FIND-SET(x): returns the representative of the set S_x containing element x
- $1 < \alpha(n) < \log^*(n) < \log(\log(n)) < \log(n)$

Union-Find Example

	S = { } The representative is underlined
Make-Set(2)	$S = \{\{\underline{2}\}\}$
MAKE-SET(3)	$S = \{ \{ \underline{2} \}, \{ \underline{3} \} \}$
MAKE-SET(4)	$S = \{ \{ \underline{2} \}, \{ \underline{3} \}, \{ \underline{4} \} \}$
FIND-Set(4) = 4	
Union(2, 4)	$S = \{\{\underline{2}, 4\}, \{\underline{3}\}\}$
FIND-SET(4) = 2	
Make-Set(5)	$S = \{ \{ \underline{2}, 4 \}, \{ \underline{3} \}, \{ \underline{5} \} \}$
$U_{NION}(4, 5)$	$S = \{\{\underline{2}, 4, 5\}, \{\underline{3}\}\}$

Kruskal's algorithm

IDEA: Repeatedly pick edge with smallest weight as long as it does not form a cycle.

```
S \leftarrow \emptyset \triangleright S will contain all MST edges

O(|V|) for each v \in V do MAKE-SET(v)

O(|E|\log|E|) Sort edges of E in non-decreasing order according to w

O(|E|) For each (u,v) \in E taken in this order do

O(\alpha(|V|)) if FIND-SET(u) \neq FIND-SET(v) \triangleright u,v in different trees

S \leftarrow S \cup \{(u,v)\}

UNION(u,v) \triangleright Edge (u,v) connects the two trees
```

Runtime: $O(|V| + |E| \log |E| + |E| \alpha(|V|)) = O(|E| \log |E|)$

MST algorithms

- Prim's algorithm:
 - Maintains one tree
 - Runs in time $O(|E| \log |V|)$, with binary heaps.
- Kruskal's algorithm:
 - Maintains a forest and uses the disjoint-set data structure
 - Runs in time $O(|E| \log |E|)$
- Best to date: Randomized algorithm by Karger, Klein, Tarjan [1993]. Runs in expected time

$$O(|V| + |E|)$$