
CMPS 2200 Introduction to Algorithms – Fall 15

10/7/15

6. Homework
Due 10/19/15 at the beginning of class

1. DP in less space (6 points)

(a) (2 points) The bottom-up dynamic programming algorithm computing the
n-th Fibonacci number F (n) takes O(n) time and uses O(n) space. Show
how to modify the algorithm to use only constant space. Give pseudo-code
for your solution.

(b) (4 points) Suppose we want to compute only the length of an LCS of two
strings of length m and n. Describe how to alter the dynamic programming
algorithm such that it only needs O(min(m,n)) space. Give pseudo-code for
your solution.
(Hint: Try to first develop an algorithm that runs in either O(m) or O(n)
space.)

2. LCS traceback (3 points)
Give pseudocode that performs the traceback to construct an LCS from a filled
dynamic programming table without using the “arrows”, in O(n+m) time. Justify
shortly why your algorithm is correct.
(Hint: You need to essentially “recompute” the information.)

3. LCS memoization (4 points)
Compute the length of LCS(“ABC ′′, “BAC ′′) using memoization. In which order
do you fill the entries in the DP-table? Give the DP-table for this case and annotate
each cell with a “time stamp” (i.e., with a number 1, 2, 3, ...) when it was filled.

4. Edit distance (8 points)
Let A and B be two strings of length m and n, respectively. The edit distance of
A and B is the minimum number of transformations needed to transform A into
B. Allowed transformations are: insert a character into A, delete a character from
A, replace a character in A with another character.

(a) (5 points) Develop a recurrence for the edit distance. This is similar to the
LCS problem. Do not forget to state the base cases. You do not need to give
a formal proof, but please justify the correctness shortly.

(b) (3 points) Give pseudocode for a bottom-up dynamic programming algorithm
that computes the edit distance for two strings of length m and n. What is
its runtime?

Flip over to back page =⇒



Practice Problems
(Not required for homework credit.)

(a) Edit distance
What is the edit distance for ”BABCADB” and ”ADCAB”? For visualiza-
tion purposes, align both strings on top of each other such that spaces are
inserted into the strings for insertions/deletions, and such that characters on
top of each other either mismatch (= replacement operation), match (= no
operation), or line up with a space (= insertion or deletion).

(b) Binomial coefficient
Given n and k with n ≥ k ≥ 0, we want to compute the binomial coefficient(
n
k

)
.

i. Give pseudo-code for the bottom-up dynamic programming algorithm to
compute

(
n
k

)
using the recurrence(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
, for n > k > 0(

n

0

)
=

(
n

n

)
= 1, for n ≥ 0

ii. What are the runtime and the space complexity of your algorithm, in
terms of n and k?

iii. Now assume you use memoization to compute
(
4
3

)
using the above recur-

rence. In which order do you fill the entries in the DP-table? Give the
DP-table for this case and annotate each cell with a “time stamp” (i.e.,
with a number 1, 2, 3, ...) when it was filled. (Hint: Draw the recursion
tree and fill the table in the order determined by the recursive evaluation.)

(c) Checkerboard

Suppose that you are given an n × n checkerboard. A checker is allowed to
move from its current square to (1) the square immediately above, (2) the
square that is one up and one to the left, and (3) the square that is one up and
one to the right, as long as it does not leave the checkerboard. You are also
given a cost function c which specifies for every valid move from square (i1, j1)
to square (i2, j2) a possibly negative amount of c((i1, j1), (i2, j2)) dollars.

Your task is to design a dynamic programming algorithm that finds a path
from some position on the bottom edge to some position on the top edge
of the checkerboard, such that the total dollar amount that is generated by
the moves on the path is maximized. (Hint: The first part of the sentence
specifies base cases, the second the recursive case.)

Define a recurrence relation for the total cost of a path to a given square:

total(i, j) = total cost of a path to square (i, j),

for all i, j. Briefly justify the correctness. Then argue in words (no pseudo-
code necessary) how the dynamic programming matrix would be filled and
finally traced back to find an optimal path, and give the runtime of the
resulting algorithm.


