CMPS 2200 Introduction to Algorithms - Fall 15

5. Homework

Due 10/8/15 at the beginning of the lab

1. Multiplying polynomials (10 points)

A polynomial of degree n is a function

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i}=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

where the coefficients a_{i} are constants and $a_{n} \neq 0$. For example, $4 x^{3}+5 x^{2}+2 x+1$ is a polynomial of degree 3 . For simplicity you may assume that $n+1$ is a power of 2 .

A polynomial of degree n can be stored in the computer by storing an array of its coefficients. The coefficient array has length $n+1$.
(a) (+ 1 extra credit) Suppose you are given a degree- n polynomial $p(x)$ as its coefficient array $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$. Now suppose you are given a value x_{0}. Give an algorithm to compute $p\left(x_{0}\right)$ in $O(n)$ time.
(b) (1 point) Now, suppose you are given two degree- n polynomials $p(x)$ and $q(x)$. What is the runtime of the straight-forward algorithm to multiply both polynomials, i.e., to compute one coefficent array that represents $p(x) \cdot q(x)$? For example, if $p(x)=3 x^{2}-2 x+4$ and $q(x)=5 x+3$ then $p(x) \cdot q(x)=$ $\left(3 x^{2}-2 x+4\right) \cdot(5 x+3)=15 x^{3}-10 x^{2}+20 x+9 x^{2}-6 x+12=15 x^{3}-x^{2}+14 x+12$, so, the resulting coefficient array is $15,-1,14,12$.
(c) (5 points) The polynomial

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} .
$$

can be rewritten as

$$
x^{\frac{n+1}{2}}\left(a_{n} x^{\frac{n-1}{2}}+a_{n-1} x^{\frac{n-1}{2}-1}+\ldots+a_{\frac{n-1}{2}+2} x+a_{\frac{n-1}{2}+1}\right)+\left(a_{\frac{n-1}{2}} x^{\frac{n}{2}-1}+\ldots+a_{1} x+a_{0}\right) .
$$

In other words, $p(x)=x^{\frac{n+1}{2}} p_{1}(x)+p_{2}(x)$, which effectively divides p into two parts of half the size each. For example, $4 x^{3}+5 x^{2}+2 x+1$ can be rewritten as $x^{2}(4 x+5)+(2 x+1)$; here $n=3$. And $7 x^{7}+6 x^{6}+5 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+x+9$ can be rewritten as $x^{4}\left(7 x^{3}+6 x^{2}+5 x+4\right)+\left(3 x^{3}+2 x^{2}+x+9\right)$; here $n=7$.
Use this as a starting point to design a divide-and-conquer algorithm for multiplying two degree- n polynomials (recurse on polynomials of degree ($n-$ $1) / 2$). Give a runtime analysis of your algorithm by setting up and solving a recurrence. The runtime of your algorithm should be the same as the runtime of part (b).
(d) (1 point) Show how to multiply two degree-1 polynomials $a x+b$ and $c x+d$ using only three multiplications of coefficients. Hint: One of the multiplications is $(a+b) \cdot(c+d)$.
(e) (3 points) Design a divide-and-conquer algorithm for multiplying two polynomials of degree n in time $\Theta\left(n^{\log _{2} 3}\right)$. Justify the running time. (Hint: Reuse part (c) and speed it up with the knowledge of part (d))
2. Master theorem (12 points)

Use the master theorem to solve the following recurrences. Justify your results. Assume that $T(1)=1$.
(a) $T(n)=16 T\left(\frac{n}{2}\right)+n^{2}$
(b) $T(n)=T\left(\frac{n}{2}\right)+\sqrt{n}$
(c) $T(n)=16 T\left(\frac{n}{4}\right)+n^{2} \log n$
(d) $T(n)=81 T\left(\frac{n}{3}\right)+n^{2} \log n$

