
CMPS 2200 Introduction to Algorithms – Fall 15

9/22/15

4. Homework
Due 10/1/15 at the beginning of the lab

1. Recursion tree (8 points)

For the recurrences below, use the recursion tree method to find a good guess of
what they could solve to asymptotically. Assume T (1) = 1.

(a) (4 points) T (n) = 4T (n/3) + n2

(b) (4 points) T (n) = 8T (n/2) + n3

2. 3-way mergesort (4 points)
Consider the following variant of mergesort, where the first call is 3wayMergesort(0,n-1,A)
to sort the array A[0..n− 1].

int 3wayMergesort(int i, int j, int[] A){

// Sort A[i..j]

if(j-i<=1)

return;

int l = (j-i)/3;

3wayMergesort(i,i+l, A);

3wayMergesort(i+l+1,i+2*l,A);

3wayMergesort(i+2*l+1,j,A);

merge(i,i+l+1,i+2*l+1); // Merges all three sub-arrays in linear time

}

Set up a runtime recurrence for 3-way mergesort above. Then solve the recur-
rence using the method of your choice. What is the runtime of 3wayMergesort?

3. Divide-and-conquer (5 points)
Let A be a sorted array of n distinct integers. Give pseudo-code for a divide-and-
conquer algorithm that decides whether there is an index i such that A[i] = i.
Your algorithm should run in O(log n) time. Give a runtime recurrence for your
algorithm and argue why the runtime is O(log n). (Hint: How many subproblems
are you allowed to recurse into, in order to get achieve the required runtime?Also,
remember that the array contains distinct integers.)

Flip over to back page =⇒



4. Strassen’s Algorithm (4 points)
Apply Strassen’s algorithm to compute


0 2 1 2
3 1 0 1
1 0 5 2
2 1 1 1

 .


1 1 1 1
2 2 0 0
1 3 1 2
3 4 1 2


The recursion should exit with the base case n = 1, i.e., 2 × 2 matrices should
recursively be computed using Strassen’s algorithm. In order to save you some
work, you may assume that the following is a partial solution and you only have
to fill in the missing values by using Strassen’s algorithm:


11 15 3 6
8 9 4 5

8 15
4 6




