CMPS 2200 Introduction to Algorithms - Fall 15

9/22/15

4. Homework

Due $\mathbf{1 0} / \mathbf{1} / \mathbf{1 5}$ at the beginning of the lab

1. Recursion tree (8 points)

For the recurrences below, use the recursion tree method to find a good guess of what they could solve to asymptotically. Assume $T(1)=1$.
(a) (4 points) $T(n)=4 T(n / 3)+n^{2}$
(b) (4 points) $T(n)=8 T(n / 2)+n^{3}$
2. 3-way mergesort (4 points)

Consider the following variant of mergesort, where the first call is 3 wayMergesort ($0, \mathrm{n}-1, \mathrm{~A}$) to sort the array $A[0 . . n-1]$.

```
int 3wayMergesort(int i, int j, int[] A){
    // Sort A[i..j]
    if(j-i<=1)
        return;
    int l = (j-i)/3;
    3wayMergesort(i,i+l, A);
    3wayMergesort(i+l+1,i+2*l,A);
    3wayMergesort(i+2*l+1,j,A);
    merge(i,i+l+1,i+2*l+1); // Merges all three sub-arrays in linear time
}
```

Set up a runtime recurrence for 3-way mergesort above. Then solve the recurrence using the method of your choice. What is the runtime of 3wayMergesort?

3. Divide-and-conquer (5 points)

Let A be a sorted array of n distinct integers. Give pseudo-code for a divide-andconquer algorithm that decides whether there is an index i such that $A[i]=i$. Your algorithm should run in $O(\log n)$ time. Give a runtime recurrence for your algorithm and argue why the runtime is $O(\log n)$. (Hint: How many subproblems are you allowed to recurse into, in order to get achieve the required runtime?Also, remember that the array contains distinct integers.)

Flip over to back page \Longrightarrow
4. Strassen's Algorithm (4 points)

Apply Strassen's algorithm to compute

$$
\left(\begin{array}{llll}
0 & 2 & 1 & 2 \\
3 & 1 & 0 & 1 \\
1 & 0 & 5 & 2 \\
2 & 1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 0 & 0 \\
1 & 3 & 1 & 2 \\
3 & 4 & 1 & 2
\end{array}\right)
$$

The recursion should exit with the base case $n=1$, i.e., 2×2 matrices should recursively be computed using Strassen's algorithm. In order to save you some work, you may assume that the following is a partial solution and you only have to fill in the missing values by using Strassen's algorithm:

$$
\left(\begin{array}{cccc}
11 & 15 & 3 & 6 \\
8 & 9 & 4 & 5 \\
& & 8 & 15 \\
& & 4 & 6
\end{array}\right)
$$

