3. Homework

Due $\mathbf{9 / 2 4 / 1 5}$ at the beginning of the lab

1. 1-2-3-4-5 (4 points)

Describe all valid red-black trees that store the numbers $1,2,3,4,5$.

2. B-tree-search using binary search (4 points)

Consider changing B-Tree-Search to use binary search instead of linear search on the key.
(a) What is the number of disk accesses?
(b) Show that the CPU time is $O(\log n)$, which is independent of k.

3. Number of keys (8 points)

(a) (4 points) The black-height of a red-black tree is the black-height of its root vertex. What is the largest possible number of keys that a red-black tree of black-height b can store? Your answer should depend on b. Justify your answer.
(b) (4 points) Suppose you have a B-tree of minimum degree k and height h. What is the largest number of keys that can be stored in such a B-tree? Your answer should depend on k and h. (Hint: This is similar to slide 12 in the B-tree slides.)

4. Red-black trees and ($2,3,4$)-trees (8 points)

A $(2,3,4)$-tree is a B-tree with minimum degree $k=2$. As we have seen on slides 11-16 of the red-black tree slides in class, a red-black tree can be converted into a ($2,3,4$)-tree by merging the red nodes into their black parent nodes.
(a) (2 points) Convert the (2,3,4)-tree below into a corresponding (valid) redblack tree.
(b) (2 points) Describe how an arbitrary (2,3,4)-tree can be converted into a valid red-black tree. Justify why your conversion yields a valid red-black tree.
(c) (2 points) Insert the number 64 into the (2,3,4)-tree below and show the resulting tree.
(d) (2 points) How do the B-tree operations for inserting 64 correspond to operations in the corresponding red-black tree?

