1. Homework

Due 9/10/15 at the beginning of the lab

1. Big-Oh ranking (10 points)

Rank the following eleven functions by order of growth, i.e., find an arrangement $f_1, f_2, ...$ of the functions satisfying $f_1 \in O(f_2), f_2 \in O(f_3), ...$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_i, f_j that are adjacent in your ordering, prove shortly why $f_i \in O(f_j)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$\sqrt[3]{n}$$
, 2^n , $\log \sqrt{n}$, n^3 , 2^{n+2} , $\log \log n$, $3n+5$, 2^{2n} , $\log n$, 4^n , \sqrt{n} ,

Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

if the limits exist; where f and g' are the derivatives of f and g, respectively.

2. O, Ω, Θ (9 points)

Show using the definitions of big-Oh, Ω , and Θ :

- (a) (4 points) $4n^6 + 3n^3 + n \in \Theta(n^6)$
- (b) (2 points) $n + 5 \notin \Omega(n^2)$
- (c) (3 points) If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, prove that

$$f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n)))$$
.

3. Code snippets (5 points)

Give the Θ -runtime for the code snippets below, depending on n. Justify your answer.

(a) (2 points)

(b) (3 points)