CMPS 2200 - Fall 2014

Dynamic Programming
 Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Dynamic programming

- Algorithm design technique
- A technique for solving problems that have

1. an optimal substructure property (recursion)
2. overlapping subproblems

- Idea: Do not repeatedly solve the same subproblems, but solve them only once and store the solutions in a dynamic programming table

Example: Fibonacci numbers

- $\mathrm{F}(0)=0 ; \mathrm{F}(1)=1 ; \mathrm{F}(n)=\mathrm{F}(n-1)+\mathrm{F}(n-2)$ for $n \geq 2$
$0,1,1,2,3,5,8,13,21,34,55,89, \ldots$
Dynamic-programming hallmark \#1
9 Optimal substructure
An optimal solution to a problem
(instance) contains optimal solutions to subproblems.

Recursion

Example: Fibonacci numbers

- $\mathrm{F}(0)=0 ; \mathrm{F}(1)=1 ; \mathrm{F}(n)=\mathrm{F}(n-1)+\mathrm{F}(n-2)$ for $n \geq 2$
- Implement this recursion directly:

- Runtime is exponential: $2^{n / 2} \leq T(n) \leq 2^{n}$
- But we are repeatedly solving the same subproblems

Dynamic-programming hallmark \#2

> Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct Fibonacci subproblems is only n.

Dynamic-programming

There are two variants of dynamic programming:

1. Bottom-up dynamic programming (often referred to as "dynamic programming")
2. Memoization

Bottom-up dynamicprogramming algorithm

- Store 1D DP-table and fill bottom-up:


```
F[0]}\leftarrow
    F[1]}\leftarrow
    for (i\leftarrow2,i\leqn,i++)
        F[i]}\leftarrow\textrm{F}[\textrm{i}-1]+\textrm{F}[\textrm{i}-2
```

 return \(\mathrm{F}[\mathrm{n}]\)
 - Time $=\Theta(n)$, space $=\Theta(n)$

Memoization algorithm

Memoization: Use recursive algorithm. After computing a solution to a subproblem, store it in a table.
Subsequent calls check the table to avoid redoing work. fibMemoization (n)
for all i : $\mathrm{F}[i]=$ null
fibMemoizationRec $(n, \mathrm{~F})$
return $\mathrm{F}[n]$
fibMemoizationRec $(n, \mathrm{~F})$
if ($\mathrm{F}[n]=$ null)
if $(n=0) \mathrm{F}[n] \leftarrow 0$
if $(n=1) \mathrm{F}[n]$
\leftarrow
$\mathrm{F}[\mathrm{n}] \leftarrow$ fibMemoizationRec(n-1,F) + fibMemoizationRec(n-2,F)
return $\mathrm{F}[\mathrm{n}]$

- Time $=\Theta(n)$, space $=\Theta(n)$

Longest Common Subsequence

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.
"a" not "the"

Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

- 2^{m} subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
- Hence, the runtime would be exponential !

Towards a better algorithm

Two-Step Approach:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.

Recursive formulation

Theorem.

$c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise. }\end{cases}$
Proof. Case $x[i]=y[j]$:

Let $z[1 \ldots k]=\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])$, where $c[i, j]$
$=k$. Then, $z[k]=x[i]$, or else z could be extended. Thus, $z[1 \ldots k-1]$ is CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$.

Proof (continued)

Claim: $z[1 \ldots k-1]=\operatorname{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$. Suppose w is a longer CS of $x[1 \ldots i-1]$ and $y[1 . j-1]$, that is, $|w|>k-1$. Then, cut and paste: $w \| z[k](w$ concatenated with $z[k])$ is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w \| z[k]|>k$. Contradiction, proving the claim.
Thus, $c[i-1, j-1]=k-1$, which implies that $c[i, j]$
$=c[i-1, j-1]+1$.
Other cases are similar. \square

Dynamic-programming hallmark \#1

Optimal substructure
 An optimal solution to a problem
 (instance) contains optimal solutions to subproblems.

Recursion
If $z=\operatorname{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

$\operatorname{LCS}(x, y, i, j)$

$$
\begin{aligned}
& \text { if }(i=0 \text { or } j=0) \\
& c[i, j] \leftarrow 0 \\
& \text { else if } x[i]=y[j] \\
& c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1 \\
& \text { else } c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j), \\
& \quad \operatorname{LCS}(x, y, i, j-1)\}
\end{aligned}
$$

return $c[i, j]$
Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

Height $=m+n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

Dynamic-programming hallmark \#2

Overlapping subproblems
 A recursive solution contains a "small" number of distinct subproblems repeated many times.

The distinct LCS subproblems are all the pairs (i, j). The number of such pairs for two strings of lengths m and n is only $m n$.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
$\operatorname{LCS}(x, y, i, j)$
if $c[i, j]=\mathrm{NIL}$

$$
\begin{array}{r}
\text { if } \begin{array}{r}
(i=0 \text { or } j=0) \\
c[i, j]
\end{array} \leftarrow 0
\end{array}
$$

same
as
before

$$
\begin{aligned}
& \text { else if } x[i]=y[j] \\
& c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1 \\
& \text { else } c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j), \\
& \quad \operatorname{LCS}(x, y, i, j-1)\}
\end{aligned}
$$

return $c[i, j]$
Space $=$ time $=\Theta(m n)$; constant work per table entry .

Recursive formulation

$$
\begin{aligned}
& c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j],\end{cases} \\
& \max \{c[i-1, j], c[i, j-1]\} \text { otherwise. } \\
& c \text { : }
\end{aligned}
$$

Bottom-up dynamicprogramming algorithm

IDEA:

Compute the table bottom-up.
Time $=\Theta(m n)$.

Bottom-up dynamicprogramming algorithm

IDEA:

Compute the table bottom-up.
Time $=\Theta(m n)$.
Reconstruct LCS by backtracking.
Space $=\Theta(m n)$.
Exercise:
$O(\min \{m, n\})$.

