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Deterministic Algorithms
Runtime for deterministic algorithms with input 
size n:
• Best-case runtime
Attained by one input of size n

• Worst-case runtime
Attained by one input of size n

• Average runtime
Averaged over all possible inputs of size n
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Deterministic Algorithms: 
Insertion Sort

• Best case runtime? 
• Worst case runtime?

for j=2 to n {
key = A[j]
// insert A[j] into sorted sequence A[1..j-1]
i=j-1
while(i>0 && A[i]>key){

A[i+1]=A[i]
i--

}
A[i+1]=key

}
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Deterministic Algorithms: 
Insertion Sort

Best-case runtime: O(n), input [1,2,3,…,n]
Attained by one input of size n

• Worst-case runtime: O(n2), input [n, n-1, …,2,1]
Attained by one input of size n

• Average runtime : O(n2)
Averaged over all possible inputs of size n

•What kind of inputs are there? 
• How many inputs are there?
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Average Runtime
• What kind of inputs are there? 

• Do [1,2,…,n] and [5,6,…,n+5] cause 
different behavior of Insertion Sort?
• No. Therefore it suffices to only consider 
all permutations of [1,2,…,n] .

• How many inputs are there?
• There are n! different permutations of 
[1,2,…,n]
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Average Runtime 
Insertion Sort: n=4

• Runtime is proportional to: 3 + #times in while loop
• Best: 3+0, Worst: 3+6=9, Average: 3+72/24 = 6

• Inputs: 4!=24 
[1,2,3,4] [4,1,2,3] [4,1,3,2] [4,3,2,1]
[2,1,3,4] [1,4,2,3] [1,4,3,2] [3,4,2,1]
[1,3,2,4] [1,2,4,3] [1,3,4,2] [3,2,4,1]
[3,1,2,4] [4,2,1,3] [4,3,1,2] [4,2,3,1]
[3,2,1,4] [2,1,4,3] [3,4,1,2] [2,4,3,1]
[2,3,1,4] [2,4,1,3] [3,1,4,2] [2,3,4,1]

0 3 4 6
1 2 3 5
1 1 2 4
2 4 5 5
3 2 4 4
2 3 3 3
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Average Runtime:
Insertion Sort

• The average runtime averages runtimes over 
all n! different input permutations
• Disadvantage of considering average runtime:

• There are still worst-case inputs that will 
have the worst-case runtime
• Are all inputs really equally likely? That 
depends on the application

 Better: Use a randomized algorithm
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Randomized Algorithm: 
Insertion Sort

• Randomize the order of the input array:
• Either prior to calling insertion sort, 
• or during insertion sort (insert random element)

• This makes the runtime depend on a probabilistic 
experiment (sequence of numbers obtained from 
random number generator; or random input 
permutation)

Runtime is a random variable (maps sequence 
of random numbers to runtimes)

• Expected runtime = expected value of runtime 
random variable
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Randomized Algorithm: 
Insertion Sort

• Runtime is independent of input order
([1,2,3,4] may have good or bad runtime, 
depending on sequence of random numbers)
•No assumptions need to be made about input 
distribution
• No one specific input elicits worst-case behavior
• The worst case is determined only by the output 
of a random-number generator.
 When possible use expected runtimes of 
randomized algorithms instead of average case 
analysis of deterministic algorithms
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Quicksort

• Proposed by C.A.R. Hoare in 1962.
• Divide-and-conquer algorithm.
• Sorts “in place” (like insertion sort, but not 

like merge sort).
• Very practical (with tuning).
• We are going to perform an expected runtime 

analysis on randomized quicksort
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Quicksort: Divide and conquer
Quicksort an n-element array:
1. Divide: Partition the array into two subarrays 

around a pivot x such that elements in lower 
subarray  x  elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

 x x  x

Key: Linear-time partitioning subroutine.
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Running time
= O(n) for n
elements.

Partitioning subroutine
PARTITION(A, p, q) A[p . . q] 

x  A[p] pivot = A[p]
i  p
for j  p + 1 to q

do if A[ j]  x
then i  i + 1

exchange A[i]  A[ j]
exchange A[p]  A[i]
return i

x  x  x ?
p i qj

Invariant:
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Example of partitioning

i j
6 10 13 5 8 3 2 11
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Example of partitioning

i j
6 10 13 5 8 3 2 11
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Example of partitioning

i j
6 10 13 5 8 3 2 11
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Example of partitioning
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Example of partitioning
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Example of partitioning

6 10 13 5 8 3 2 11
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6 5 13 10 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11
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6 5 13 10 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11
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i j
6 5 3 2 8 13 10 11
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Example of partitioning
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Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11
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Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

6 5 3 2 8 13 10 11

i
2 5 3 6 8 13 10 11
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Pseudocode for quicksort
QUICKSORT(A, p, r)

if p < r
then q  PARTITION(A, p, r)

QUICKSORT(A, p, q–1)
QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)
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Analysis of quicksort

• Assume all input elements are distinct.
• In practice, there are better partitioning 

algorithms for when duplicate input 
elements may exist.

• Let T(n) = worst-case running time on 
an array of n elements.
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Worst-case of 
quicksort

• Input sorted or reverse sorted.
• Partition around min or max element.
• One side of partition always has no elements.

)(
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)()1()1(
)()1()0()(

2n
nnT

nnT
nnTTnT
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



(arithmetic series)



CMPS 2200 Intro. to Algorithms 28

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn
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Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(n)
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cn
T(0) T(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn
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cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) T(n–2)
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cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

(1)
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cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

T(0)

 2

1
nk
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
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


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height = n
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cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn
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cn
c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

c(n–2)
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(1)
(1)

(1)
T(n) = (n) + (n2)

= (n2)
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Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:
T(n) = 2T(n/2) + (n)

= (n log n) (same as merge sort)

What if the split is always 10
9

10
1 : ?

    )()( 10
9

10
1 nnTnTnT 

What is the solution to this recurrence?
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Analysis of “almost-best” case
)(nT
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Analysis of “almost-best” case
cn

 nT 10
1  nT 10

9
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Analysis of “almost-best” case
cn

cn10
1 cn10

9

 nT 100
1  nT 100

9  nT 100
9  nT 100

81
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Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

(1)

(1)

log10/9n

cn

cn

cn

…O(n) leaves
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log10
n

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

(1)

(1)

log10/9n

cn

cn

cn

T(n)  cn log10/9n + (n)

…

cn log10n 

O(n) leaves

(n log n)
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Quicksort Runtimes
• Best case runtime Tbest(n)  O(n log n)
• Worst case runtime Tworst(n)  O(n2)

• Worse than mergesort? Why is it called 
quicksort then?

• Its average runtime Tavg(n)  O(n log n )
• Better even, the expected runtime of 

randomized quicksort is O(n log n)
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Average Runtime
The average runtime Tavg(n) for Quicksort is
the average runtime over all possible inputs
of length n.
• Tavg(n) has to average the runtimes over all n! 
different input permutations.
• There are still worst-case inputs that will 
have a O(n2) runtime
 Better: Use randomized quicksort
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Randomized quicksort
IDEA: Partition around a random element.
• Running time is independent of the input 

order. It depends only on the sequence s
of random numbers.

• No assumptions need to be made about 
the input distribution.

• No specific input elicits the worst-case 
behavior.

• The worst case is determined only by the 
sequence s of random numbers.
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Quicksort in practice

• Quicksort is a great general-purpose 
sorting algorithm.

• Quicksort is typically over twice as fast 
as merge sort.

• Quicksort can benefit substantially from 
code tuning.  

• Quicksort behaves well even with 
caching and virtual memory.
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Average Runtime vs. Expected 
Runtime

• Average runtime is averaged over all inputs of a 
deterministic algorithm.
• Expected runtime is the expected value of the 
runtime random variable of a randomized 
algorithm. It effectively “averages” over all 
sequences of random numbers.

• De facto both analyses are very similar. 
However in practice the randomized algorithm 
ensures that not one single input elicits worst case 
behavior.



Order statistics
Select the ith smallest of n elements (the 
element with rank i).
• i = 1: minimum;
• i = n: maximum;
• i = (n+1)/2 or (n+1)/2: median.

Naive algorithm: Sort and index ith element.
Worst-case running time = (n log n + 1)

= (n log n),
using merge sort (not quicksort).
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Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) i-th smallest of A[ p . . q] 
if p = q  then return A[p]
r  RAND-PARTITION(A, p, q)
k  r – p + 1 k = rank(A[r])
if  i = k  then return A[r]
if  i < k  

then return RAND-SELECT(A, p, r – 1, i )
else return RAND-SELECT(A, r + 1, q, i – k )

 A[r]  A[r]
rp q

k

CMPS 2200 Intro. to Algorithms 48



Example

pivot
i = 76 10 13 5 8 3 2 11

k = 4

Select the 7 – 4 = 3rd smallest recursively.

Select the i = 7th smallest:

2 5 3 6 8 13 10 11
Partition:
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Intuition for analysis

Lucky:
101log 3/4  nn

CASE 3
T(n) = T(3n/4) + dn

= (n)
Unlucky:

T(n) = T(n – 1) + dn
= (n2)

arithmetic series

Worse than sorting!

(All our analyses today assume that all elements 
are distinct.)

for RAND-PARTITION
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Analysis of expected time
• Call a pivot good if its rank lies in [n/4,3n/4].
• How many good pivots are there?
A random pivot has 50% chance of being good.

• Let T(n,s) be the runtime random variable

T(n,s)  T(3n/4,s) + X(s)dn
time to reduce array size to  3/4n

#times it takes to
find a good pivot

n/2

Runtime of partition
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Analysis of expected time
Lemma: A fair coin needs to be tossed an expected 
number of 2 times until the first “heads” is seen.

Proof: Let E(X) be the expected number of tosses 
until the first “heads”is seen.
• Need at least one toss, if it’s “heads” we are done.
• If it’s “tails” we need to repeat (probability ½).

 E(X) = 1 + ½ E(X)
 E(X) = 2
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Analysis of expected time

T(n,s)  T(3n/4,s) + X(s)dn
time to reduce array size to  3/4n

#times it takes to
find a good pivot

Runtime of partition

 E(T(n,s))  E(T(3n/4,s)) + E(X(s)dn)
 E(T(n,s))  E(T(3n/4,s)) + E(X(s))dn
 E(T(n,s))  E(T(3n/4,s)) + 2dn
 Texp(n)  Texp(3n/4) + (n)
 Texp(n)  (n)

Linearity of 
expectation

Lemma
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Summary of randomized 
order-statistic selection

• Works fast: linear expected time.
• Excellent algorithm in practice.
• But, the worst case is very bad: (n2).

Q. Is there an algorithm that runs in linear 
time in the worst case?

IDEA: Generate a good pivot recursively.
This algorithms large constants though and
therefore is not efficient in practice.

A. Yes, due to Blum, Floyd, Pratt, Rivest, and 
Tarjan [1973].

CMPS 2200 Intro. to Algorithms 54


