
CMPS 2200 Intro. to Algorithms 1

CMPS 2200 – Fall 2014

Randomized Algorithms, Quicksort
and Randomized Selection

Carola Wenk
Slides courtesy of Charles Leiserson with additions

by Carola Wenk

CMPS 2200 Intro. to Algorithms 2

Deterministic Algorithms
Runtime for deterministic algorithms with input
size n:
• Best-case runtime
Attained by one input of size n

• Worst-case runtime
Attained by one input of size n

• Average runtime
Averaged over all possible inputs of size n

CMPS 2200 Intro. to Algorithms 3

Deterministic Algorithms:
Insertion Sort

• Best case runtime?
• Worst case runtime?

for j=2 to n {
key = A[j]
// insert A[j] into sorted sequence A[1..j-1]
i=j-1
while(i>0 && A[i]>key){

A[i+1]=A[i]
i--

}
A[i+1]=key

}

CMPS 2200 Intro. to Algorithms 4

Deterministic Algorithms:
Insertion Sort

Best-case runtime: O(n), input [1,2,3,…,n]
Attained by one input of size n

• Worst-case runtime: O(n2), input [n, n-1, …,2,1]
Attained by one input of size n

• Average runtime : O(n2)
Averaged over all possible inputs of size n

•What kind of inputs are there?
• How many inputs are there?

CMPS 2200 Intro. to Algorithms 5

Average Runtime
• What kind of inputs are there?

• Do [1,2,…,n] and [5,6,…,n+5] cause
different behavior of Insertion Sort?
• No. Therefore it suffices to only consider
all permutations of [1,2,…,n] .

• How many inputs are there?
• There are n! different permutations of
[1,2,…,n]

CMPS 2200 Intro. to Algorithms 6

Average Runtime
Insertion Sort: n=4

• Runtime is proportional to: 3 + #times in while loop
• Best: 3+0, Worst: 3+6=9, Average: 3+72/24 = 6

• Inputs: 4!=24
[1,2,3,4] [4,1,2,3] [4,1,3,2] [4,3,2,1]
[2,1,3,4] [1,4,2,3] [1,4,3,2] [3,4,2,1]
[1,3,2,4] [1,2,4,3] [1,3,4,2] [3,2,4,1]
[3,1,2,4] [4,2,1,3] [4,3,1,2] [4,2,3,1]
[3,2,1,4] [2,1,4,3] [3,4,1,2] [2,4,3,1]
[2,3,1,4] [2,4,1,3] [3,1,4,2] [2,3,4,1]

0 3 4 6
1 2 3 5
1 1 2 4
2 4 5 5
3 2 4 4
2 3 3 3

CMPS 2200 Intro. to Algorithms 7

Average Runtime:
Insertion Sort

• The average runtime averages runtimes over
all n! different input permutations
• Disadvantage of considering average runtime:

• There are still worst-case inputs that will
have the worst-case runtime
• Are all inputs really equally likely? That
depends on the application

 Better: Use a randomized algorithm

CMPS 2200 Intro. to Algorithms 8

Randomized Algorithm:
Insertion Sort

• Randomize the order of the input array:
• Either prior to calling insertion sort,
• or during insertion sort (insert random element)

• This makes the runtime depend on a probabilistic
experiment (sequence of numbers obtained from
random number generator; or random input
permutation)

Runtime is a random variable (maps sequence
of random numbers to runtimes)

• Expected runtime = expected value of runtime
random variable

CMPS 2200 Intro. to Algorithms 9

Randomized Algorithm:
Insertion Sort

• Runtime is independent of input order
([1,2,3,4] may have good or bad runtime,
depending on sequence of random numbers)
•No assumptions need to be made about input
distribution
• No one specific input elicits worst-case behavior
• The worst case is determined only by the output
of a random-number generator.
 When possible use expected runtimes of
randomized algorithms instead of average case
analysis of deterministic algorithms

CMPS 2200 Intro. to Algorithms 10

Quicksort

• Proposed by C.A.R. Hoare in 1962.
• Divide-and-conquer algorithm.
• Sorts “in place” (like insertion sort, but not

like merge sort).
• Very practical (with tuning).
• We are going to perform an expected runtime

analysis on randomized quicksort

CMPS 2200 Intro. to Algorithms 11

Quicksort: Divide and conquer
Quicksort an n-element array:
1. Divide: Partition the array into two subarrays

around a pivot x such that elements in lower
subarray  x  elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

 x x  x

Key: Linear-time partitioning subroutine.

CMPS 2200 Intro. to Algorithms 12

Running time
= O(n) for n
elements.

Partitioning subroutine
PARTITION(A, p, q) A[p . . q]

x  A[p] pivot = A[p]
i  p
for j  p + 1 to q

do if A[j]  x
then i  i + 1

exchange A[i]  A[j]
exchange A[p]  A[i]
return i

x  x  x ?
p i qj

Invariant:

CMPS 2200 Intro. to Algorithms 13

Example of partitioning

i j
6 10 13 5 8 3 2 11

CMPS 2200 Intro. to Algorithms 14

Example of partitioning

i j
6 10 13 5 8 3 2 11

CMPS 2200 Intro. to Algorithms 15

Example of partitioning

i j
6 10 13 5 8 3 2 11

CMPS 2200 Intro. to Algorithms 16

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

CMPS 2200 Intro. to Algorithms 17

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

CMPS 2200 Intro. to Algorithms 18

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

CMPS 2200 Intro. to Algorithms 19

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

CMPS 2200 Intro. to Algorithms 20

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

CMPS 2200 Intro. to Algorithms 21

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

CMPS 2200 Intro. to Algorithms 22

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

CMPS 2200 Intro. to Algorithms 23

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

CMPS 2200 Intro. to Algorithms 24

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

6 5 3 2 8 13 10 11

i
2 5 3 6 8 13 10 11

CMPS 2200 Intro. to Algorithms 25

Pseudocode for quicksort
QUICKSORT(A, p, r)

if p < r
then q  PARTITION(A, p, r)

QUICKSORT(A, p, q–1)
QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)

CMPS 2200 Intro. to Algorithms 26

Analysis of quicksort

• Assume all input elements are distinct.
• In practice, there are better partitioning

algorithms for when duplicate input
elements may exist.

• Let T(n) = worst-case running time on
an array of n elements.

CMPS 2200 Intro. to Algorithms 27

Worst-case of
quicksort

• Input sorted or reverse sorted.
• Partition around min or max element.
• One side of partition always has no elements.

)(
)()1(

)()1()1(
)()1()0()(

2n
nnT

nnT
nnTTnT







(arithmetic series)

CMPS 2200 Intro. to Algorithms 28

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

CMPS 2200 Intro. to Algorithms 29

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(n)

CMPS 2200 Intro. to Algorithms 30

cn
T(0) T(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

CMPS 2200 Intro. to Algorithms 31

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) T(n–2)

CMPS 2200 Intro. to Algorithms 32

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

(1)

CMPS 2200 Intro. to Algorithms 33

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

T(0)

 2

1
nk

k









 



height

height = n

CMPS 2200 Intro. to Algorithms 34

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

T(0)

 2

1
nk

k









 



n

height = n

CMPS 2200 Intro. to Algorithms 35

cn
c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

c(n–2)

(1)

 2

1
nk

k









 



n

height = n

(1)
(1)

(1)
T(n) = (n) + (n2)

= (n2)

CMPS 2200 Intro. to Algorithms 36

Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:
T(n) = 2T(n/2) + (n)

= (n log n) (same as merge sort)

What if the split is always 10
9

10
1 : ?

   )()(10
9

10
1 nnTnTnT 

What is the solution to this recurrence?

CMPS 2200 Intro. to Algorithms 37

Analysis of “almost-best” case
)(nT

CMPS 2200 Intro. to Algorithms 38

Analysis of “almost-best” case
cn

 nT 10
1  nT 10

9

CMPS 2200 Intro. to Algorithms 39

Analysis of “almost-best” case
cn

cn10
1 cn10

9

 nT 100
1  nT 100

9  nT 100
9  nT 100

81

CMPS 2200 Intro. to Algorithms 40

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

(1)

(1)

log10/9n

cn

cn

cn

…O(n) leaves

CMPS 2200 Intro. to Algorithms 41

log10
n

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

(1)

(1)

log10/9n

cn

cn

cn

T(n)  cn log10/9n + (n)

…

cn log10n 

O(n) leaves

(n log n)

CMPS 2200 Intro. to Algorithms 42

Quicksort Runtimes
• Best case runtime Tbest(n)  O(n log n)
• Worst case runtime Tworst(n)  O(n2)

• Worse than mergesort? Why is it called
quicksort then?

• Its average runtime Tavg(n)  O(n log n)
• Better even, the expected runtime of

randomized quicksort is O(n log n)

CMPS 2200 Intro. to Algorithms 43

Average Runtime
The average runtime Tavg(n) for Quicksort is
the average runtime over all possible inputs
of length n.
• Tavg(n) has to average the runtimes over all n!
different input permutations.
• There are still worst-case inputs that will
have a O(n2) runtime
 Better: Use randomized quicksort

CMPS 2200 Intro. to Algorithms 44

Randomized quicksort
IDEA: Partition around a random element.
• Running time is independent of the input

order. It depends only on the sequence s
of random numbers.

• No assumptions need to be made about
the input distribution.

• No specific input elicits the worst-case
behavior.

• The worst case is determined only by the
sequence s of random numbers.

CMPS 2200 Intro. to Algorithms 45

Quicksort in practice

• Quicksort is a great general-purpose
sorting algorithm.

• Quicksort is typically over twice as fast
as merge sort.

• Quicksort can benefit substantially from
code tuning.

• Quicksort behaves well even with
caching and virtual memory.

CMPS 2200 Intro. to Algorithms 46

Average Runtime vs. Expected
Runtime

• Average runtime is averaged over all inputs of a
deterministic algorithm.
• Expected runtime is the expected value of the
runtime random variable of a randomized
algorithm. It effectively “averages” over all
sequences of random numbers.

• De facto both analyses are very similar.
However in practice the randomized algorithm
ensures that not one single input elicits worst case
behavior.

Order statistics
Select the ith smallest of n elements (the
element with rank i).
• i = 1: minimum;
• i = n: maximum;
• i = (n+1)/2 or (n+1)/2: median.

Naive algorithm: Sort and index ith element.
Worst-case running time = (n log n + 1)

= (n log n),
using merge sort (not quicksort).

CMPS 2200 Intro. to Algorithms 47

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) i-th smallest of A[p . . q]
if p = q then return A[p]
r  RAND-PARTITION(A, p, q)
k  r – p + 1 k = rank(A[r])
if i = k then return A[r]
if i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

 A[r]  A[r]
rp q

k

CMPS 2200 Intro. to Algorithms 48

Example

pivot
i = 76 10 13 5 8 3 2 11

k = 4

Select the 7 – 4 = 3rd smallest recursively.

Select the i = 7th smallest:

2 5 3 6 8 13 10 11
Partition:

CMPS 2200 Intro. to Algorithms 49

Intuition for analysis

Lucky:
101log 3/4  nn

CASE 3
T(n) = T(3n/4) + dn

= (n)
Unlucky:

T(n) = T(n – 1) + dn
= (n2)

arithmetic series

Worse than sorting!

(All our analyses today assume that all elements
are distinct.)

for RAND-PARTITION

CMPS 2200 Intro. to Algorithms 50

Analysis of expected time
• Call a pivot good if its rank lies in [n/4,3n/4].
• How many good pivots are there?
A random pivot has 50% chance of being good.

• Let T(n,s) be the runtime random variable

T(n,s)  T(3n/4,s) + X(s)dn
time to reduce array size to  3/4n

#times it takes to
find a good pivot

n/2

Runtime of partition

CMPS 2200 Intro. to Algorithms 51

Analysis of expected time
Lemma: A fair coin needs to be tossed an expected
number of 2 times until the first “heads” is seen.

Proof: Let E(X) be the expected number of tosses
until the first “heads”is seen.
• Need at least one toss, if it’s “heads” we are done.
• If it’s “tails” we need to repeat (probability ½).

 E(X) = 1 + ½ E(X)
 E(X) = 2

CMPS 2200 Intro. to Algorithms 52

Analysis of expected time

T(n,s)  T(3n/4,s) + X(s)dn
time to reduce array size to  3/4n

#times it takes to
find a good pivot

Runtime of partition

 E(T(n,s))  E(T(3n/4,s)) + E(X(s)dn)
 E(T(n,s))  E(T(3n/4,s)) + E(X(s))dn
 E(T(n,s))  E(T(3n/4,s)) + 2dn
 Texp(n)  Texp(3n/4) + (n)
 Texp(n)  (n)

Linearity of
expectation

Lemma

CMPS 2200 Intro. to Algorithms 53

Summary of randomized
order-statistic selection

• Works fast: linear expected time.
• Excellent algorithm in practice.
• But, the worst case is very bad: (n2).

Q. Is there an algorithm that runs in linear
time in the worst case?

IDEA: Generate a good pivot recursively.
This algorithms large constants though and
therefore is not efficient in practice.

A. Yes, due to Blum, Floyd, Pratt, Rivest, and
Tarjan [1973].

CMPS 2200 Intro. to Algorithms 54

