CMPS 2200 - Fall 2014

More on Shortest Paths Carola Wenk

Slides courtesy of Charles Leiserson with changes by Carola Wenk

Negative-weight cycles

Recall: If a graph $G=(V, E)$ contains a negativeweight cycle, then some shortest paths may not exist. Example:

Bellman-Ford algorithm: Finds all shortest-path weights from a source $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\}\}$ initialization do $d[\nu] \leftarrow \infty$
for $i \leftarrow 1$ to $|V|-1$ do
for each edge $(u, v) \in E$ do

$$
\text { if } \left.\begin{array}{c}
d[\nu]>d[u]+w(u, v) \text { then } \\
d[v] \leftarrow d[u]+w(u, v) \\
\pi[v]
\end{array}\right\} \begin{aligned}
& \text { relaxation } \\
& \text { step }
\end{aligned}
$$

for each edge $(u, v) \in E$
do if $d[v]>d[u]+w(u, v)$
then report that a negative-weight cycle exists
At the end, $d[v]=\delta(s, v)$. Time $=O(|V||E|)$.

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

$$
\begin{array}{ccccc}
A & B & C & D & E \\
\hline \hline 0 & \infty & \infty & \infty & \infty \\
\hline 0 & -1 & \infty & \infty & \infty \\
0 & -1 & 4 & \infty & \infty
\end{array}
$$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

$$
\begin{array}{ccccc}
A & B & C & D & E \\
\hline \hline 0 & \infty & \infty & \infty & \infty \\
\hline 0 & -1 & \infty & \infty & \infty \\
0 & -1 & 4 & \infty & \infty \\
0 & -1 & 2 & \infty & \infty \\
\hline 0 & -1 & 2 & \infty & 1
\end{array}
$$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

$$
\begin{array}{ccccc}
A & B & C & D & E \\
\hline 0 & \infty & \infty & \infty & \infty \\
\hline 0 & -1 & \infty & \infty & \infty \\
0 & -1 & 4 & \infty & \infty \\
0 & -1 & 2 & \infty & \infty \\
\hline 0 & -1 & 2 & \infty & 1 \\
0 & -1 & 2 & 1 & 1 \\
0 & -1 & 2 & -2 & 1
\end{array}
$$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Note: Values decrease monotonically.

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1

0	-1	2	-2	1

... and 2 more iterations

Correctness

Theorem. If $G=(V, E)$ contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v]=\delta(s, v)$ for all $v \in V$. Proof. Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since p is a shortest path, we have

$$
\delta\left(s, v_{i}\right)=\delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)
$$

Correctness (continued)

Initially, $d\left[v_{0}\right]=0=\delta\left(s, v_{0}\right)$, and $d[s]$ is unchanged by subsequent relaxations.

- After 1 pass through E, we have $d\left[v_{1}\right]=\delta\left(s, v_{1}\right)$.
- After 2 passes through E, we have $d\left[v_{2}\right]=\delta\left(s, v_{2}\right)$.
- After k passes through E, we have $d\left[v_{k}\right]=\delta\left(s, v_{k}\right)$.

Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq|V|-1$ edges. \square

Detection of negative-weight cycles

Corollary. If a value $d[\nu]$ fails to converge after $|V|-1$ passes, there exists a negative-weight cycle in G reachable from s. \square

DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first topologically sort the vertices.

- Determine $f: V \rightarrow\{1,2, \ldots,|V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u)<f(v)$.

DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first topologically sort the vertices.

- Determine $f: V \rightarrow\{1,2, \ldots,|V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u)<f(v)$.
- $O(|V|+|E|)$ time

- Walk through the vertices $u \in V$ in this order, relaxing the edges in $\operatorname{Adj}[u]$, thereby obtaining the shortest paths from s in a total of $O(|V|+|E|)$ time.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: $O(|V||E|)$
- DAG: One pass of Bellman-Ford: $O(|V|+|E|)$

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: $O(|V||E|)$
- DAG: One pass of Bellman-Ford: $O(|V|+|E|)$

All-pairs shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm $|V|$ times: $O(|V||E| \log |V|)$
- General
- Bellman-Ford $|V|$ times: $\mathrm{O}\left(|V|{ }^{2}|E|\right)$
- Floyd-Warshall: $\mathrm{O}\left(|V|^{3}\right)$

