CMPS 2200 – Fall 2014

Divide-and-Conquer III Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

The divide-and-conquer design paradigm

- 1. Divide the problem (instance) into subproblems of sizes that are fractions of the original problem size.
- 2. *Conquer* the subproblems by solving them recursively.
- 3. Combine subproblem solutions.
- ⇒ Runtime recurrences

The master method

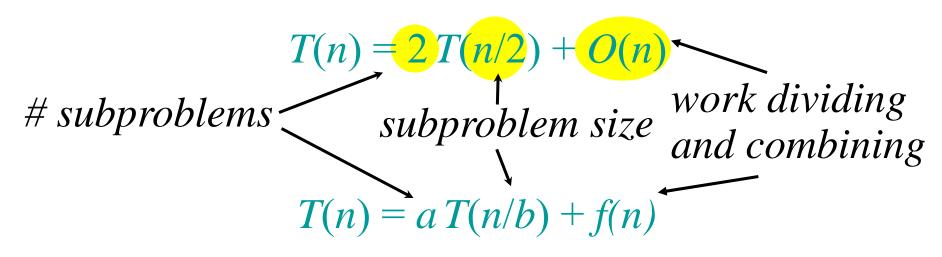
The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Example: merge sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort a=2 subarrays of size n/2=n/b
- 3. Combine: Linear-time merge, runtime $f(n) \in O(n)$



Master Theorem

$$T(n) = a T(n/b) + f(n)$$

CASE 1:

$$f(n) = O(n^{\log_b a - \varepsilon})$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a})$$

for some $\varepsilon > 0$

CASE 2:

$$f(n) = \Theta(n^{\log_b a} \log^k n)$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

for some $k \ge 0$

CASE 3:

$$(i) f(n) = \Omega(n^{\log_b a + \varepsilon})$$

for some $\varepsilon > 0$

and (ii)
$$a f(n/b) \le c f(n)$$

for some constant c < 1

$$\Rightarrow T(n) = \Theta(f(n))$$

How to apply the theorem

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

- 2. $f(n) = \Theta(n^{\log_b a} \log^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution: $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.

How to apply the theorem

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

Example: merge sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. Combine: Linear-time merge.

subproblems subproblem size
$$T(n) = 2T(n/2) + O(n)$$

work dividing and combining

$$n^{\log_b a} = n^{\log_2 2} = n^1 = n \Rightarrow \text{CASE 2 } (k = 0)$$

 $\Rightarrow T(n) = \Theta(n \log n)$.

Example: binary search

$$T(n) = 1T(n/2) + \Theta(1)$$
subproblems | work dividing and combining subproblem size

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \Rightarrow \text{CASE 2 } (k = 0)$$

 $\Rightarrow T(n) = \Theta(\log n)$.

Matrix multiplication: Divide-and-conquer algorithm

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

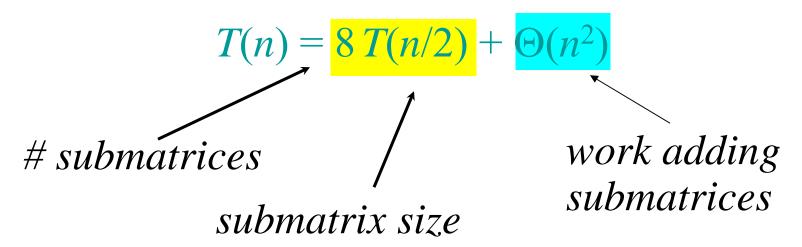
$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = a \cdot e + b \cdot g$$

 $s = a \cdot f + b \cdot h$ 8 recursive mults of $(n/2) \times (n/2)$ submatrices
 $t = c \cdot e + d \cdot g$ 4 adds of $(n/2) \times (n/2)$ submatrices
 $u = c \cdot f + d \cdot h$

Matrix multiplication: Analysis of D&C algorithm



$$n^{\log_b a} = n^{\log_2 8} = n^3 \implies \text{CASE } 1 \implies T(n) = \Theta(n^3)$$

No better than the ordinary matrix multiplication algorithm.

Strassen's algorithm

- 1. Divide: Partition A and B into $(n/2)\times(n/2)$ submatrices. Form P-terms to be multiplied using + and -.
- 2. Conquer: Perform 7 multiplications of $(n/2)\times(n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2)\times(n/2)$ submatrices.

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

 $n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \text{CASE } 1 \implies T(n) = \Theta(n^{\log_2 7})$

Master theorem: Examples

```
Ex. T(n) = 4T(n/2) + \operatorname{sqrt}(n)

a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = \operatorname{sqrt}(n).

Case 1: f(n) = O(n^{2-\epsilon}) for \epsilon = 1.5.

\therefore T(n) = \Theta(n^2).
```

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2 \log^0 n)$, that is, $k = 0$.
 $T(n) = \Theta(n^2 \log n)$.

Master theorem: Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
CASE 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex. $T(n) = 4T(n/2) + n^2/\log n$ $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^2/\log n.$ Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $\log n \in o(n^{\varepsilon})$.

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method .
- Can lead to more efficient algorithms